51. Biodegradable nano-organosilica gene carrier for high-efficiency gene transfection
- Author
-
Mozhen Wang, Xuewu Ge, Ye-Zi You, Li Ma, Shan Lei, Kun Zeng, Wenxiu Yang, and Yu Zhao
- Subjects
Male ,Surface Properties ,Biomedical Engineering ,Mice, Inbred Strains ,chemistry.chemical_compound ,Mice ,In vivo ,Zeta potential ,Animals ,Humans ,General Materials Science ,MTT assay ,Organosilicon Compounds ,Polylysine ,Particle Size ,Cytotoxicity ,Fluorescent Dyes ,Molecular Structure ,HEK 293 cells ,Optical Imaging ,Gene Transfer Techniques ,General Chemistry ,General Medicine ,Transfection ,Carbocyanines ,HEK293 Cells ,chemistry ,Naked DNA ,Biophysics ,Nanoparticles ,DNA ,HeLa Cells - Abstract
Finding and exploiting safe and high-efficiency gene carriers have always been critical tasks for gene therapy. In this work, novel GSH-triggered degradable organosilica nanoparticles grafted with guanidinated-fluorinated α-polylysine (o-SiNP-GF) are prepared to be studied as gene carriers. The organosilica matrix of o-SiNP-GF is synthesized through the hydrolysis and condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) and bis[3-(triethoxysilyl)propyl]tetrasulfide (BTSPTS). The o-SiNP-GF nanoparticles have a size of about 20 nm. They possess a positive zeta potential of 42 mV in PBS (pH 7.4) and can be disintegrated in the presence of GSH. The cytotoxicity and DNA-binding ability of o-SiNP-GF, as well as in vitro gene transfection performance of DNA/o-SiNP-GF complexes, have been investigated using enhanced green fluorescent protein plasmid (pEGFP) as the DNA model. MTT assay shows that the cytotoxicity of o-SiNP-GF is very low even at a concentration up to 800 μg mL-1. The o-SiNP-GF nanoparticles can effectively bind to pEGFP through a complex coacervation method. The in vitro transfection efficiency of pEGFP/o-SiNP-GF complexes in 293T cells is up to 94.7% at the N/P ratio of 10, much higher than that of pEGFP/PEI complexes. Luciferase gene and fibroblast growth factor (FGF2) gene are also used as the DNA models to study the in vivo gene transfection performance of the o-SiNP-GF carrier by bioluminescence imaging and the evaluation of the healing rate of a mouse wound, respectively. Compared with naked DNA and DNA/PEI complexes, DNA/o-SiNP-GF complexes show much higher in vivo transfection efficiency. This work not only provides a way to prepare novel GSH-triggered degradable organosilica nanoparticles of size less than 50 nm, but also proves that the modification of guanidinated-fluorinated α-polylysine is an effective method to improve the efficiency of gene carriers.
- Published
- 2020