Loïc Lehnhoff, Hervé Glotin, Serge Bernard, Willy Dabin, Yves Le Gall, Eric Menut, Eleonore Meheust, Hélène Peltier, Alain Pochat, Krystel Pochat, Thomas Rimaud, Quiterie Sourget, Jérôme Spitz, Olivier Van Canneyt, Bastien Mérigot, MARine Biodiversity Exploitation and Conservation (UMR MARBEC), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), DYNamiques de l’Information (DYNI), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Smart Integrated Electronic Systems (SmartIES), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Observatoire pour la Conservation de la Mégafaune Marine (PELAGIS), LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), OCTECH Ocean Technology (OCTECH), Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-18-CE40-0014,SMILES,Modélisation et Inférence Statistique pour l'Apprentissage non-supervisé à partir de Données Massives(2018), and ANR-20-CHIA-0014,ADSIL,Écoute intelligente sous-marine avancée(2020)
By-catch is the most direct threat to marine mammals globally. Acoustic repellent devices (pingers) have been developed to reduce dolphin by-catch. However, mixed results regarding their efficiency have been reported. Here, we present a new bio-inspired acoustic beacon, emitting returning echoes from the echolocation clicks of a common dolphin ‘Delphinus delphis’ from a fishing net, to inform dolphins of its presence. Using surface visual observations and the automatic detection of echolocation clicks, buzzes, burst-pulses and whistles, we assessed wild dolphins’ behavioural responses during sequential experiments (i.e., before, during and after the beacon’s emission), with or without setting a net. When the device was activated, the mean number of echolocation clicks and whistling time of dolphins significantly increased by a factor of 2.46 and 3.38, respectively (p < 0.01). Visual surface observations showed attentive behaviours of dolphins, which kept a distance of several metres away from the emission source before calmly leaving. No differences were observed among sequences for buzzes/burst-pulses. Our results highlight that this prototype led common dolphins to echolocate more and communicate differently, and it would favour net detection. Complementary tests of the device during the fishing activities of professional fishermen should further contribute to assessment of its efficiency.