51. Bayesian methods for population genetics : relationships between genetic population structure and environment
- Author
-
Jay, Flora, STAR, ABES, Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université de Grenoble, and Olivier François
- Subjects
Modèles à classes latentes ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,MCMC ,Modèles bioclimatiques ,Modèles bayésiens hiérarchiques ,Environmental covariates ,Bioclimatic models ,Population genetic structure ,Structure génétique des populations ,Bayesian hierarchical models ,Covariables environnementales ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,Latent class models - Abstract
We introduce a new method to study the relationships between population genetic structure and environment. This method is based on Bayesian hierarchical models which use both multi-loci genetic data, and spatial, environmental, and/or cultural data. Our method provides the inference of population genetic structure, the evaluation of the relationships between the structure and non-genetic covariates, and the prediction of population genetic structure based on these covariates. We present two applications of our Bayesian method. First, we used human genetic data to evaluate the role of geography and languages in shaping Native American population structure. Second, we studied the population genetic structure of 20 Alpine plant species and we forecasted intra-specific changes in response to global warming. STAR, Nous présentons une nouvelle méthode pour étudier les relations entre la structure génétique des populations et l'environnement. Cette méthode repose sur des modèles hiérarchiques bayésiens qui utilisent conjointement des données génétiques multi-locus et des données spatiales, environnementales et/ou culturelles. Elle permet d'estimer la structure génétique des populations, d'évaluer ses liens avec des covariables non génétiques, et de projeter la structure génétique des populations en fonction de ces covariables. Dans un premier temps, nous avons appliqué notre approche à des données de génétique humaine pour évaluer le rôle de la géographie et des langages dans la structure génétique des populations amérindiennes. Dans un deuxième temps, nous avons étudié la structure génétique des populations pour 20 espèces de plantes alpines et nous avons projeté les modifications intra spécifiques qui pourront être causées par le réchauffement climatique.
- Published
- 2011