106 results on '"Angulo, R. E."'
Search Results
102. Euclid: Modelling massive neutrinos in cosmology -- a code comparison
- Author
-
Adamek, J., Angulo, R. E., Arnold, C., Baldi, M., Biagetti, M., Bose, B., Carbone, C., Castro, T., Dakin, J., Dolag, K., Elbers, W., Fidler, C., Giocoli, C., Hannestad, S., Hassani, F., Hernández-Aguayo, C., Kazuya Koyama, Li, B., Mauland, R., Monaco, P., Moretti, C., Mota, D. F., Partmann, C., Parimbelli, G., Potter, D., Schneider, A., Schulz, S., Smith, R. E., Springel, V., Stadel, J., Tram, T., Viel, M., Villaescusa-Navarro, F., Winther, H. A., Wright, B. S., Zennaro, M., Aghanim, N., Amendola, L., Auricchio, N., Bonino, D., Branchini, E., Brescia, M., Camera, S., Capobianco, V., Cardone, V. F., Carretero, J., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Grazian, A., Haugan, S. V., Holmes, W., Hornstrup, A., Jahnke, K., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Marulli, F., Massey, R., Medinaceli, E., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M, Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L, Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Fabbian, G., Scottez, V., Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Euclid, and HEP, INSPIRE
- Subjects
cosmological model ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,formation ,halo ,FOS: Physical sciences ,power spectrum ,matter ,dark matter ,boundary condition ,bispectrum ,scale ,baryon ,neutrino ,massive ,statistics ,numerical methods ,astro-ph.CO ,mass ,nonlinear ,structure ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The measurement of the absolute neutrino mass scale from cosmological large-scale clustering data is one of the key science goals of the Euclid mission. Such a measurement relies on precise modelling of the impact of neutrinos on structure formation, which can be studied with $N$-body simulations. Here we present the results from a major code comparison effort to establish the maturity and reliability of numerical methods for treating massive neutrinos. The comparison includes eleven full $N$-body implementations (not all of them independent), two $N$-body schemes with approximate time integration, and four additional codes that directly predict or emulate the matter power spectrum. Using a common set of initial data we quantify the relative agreement on the nonlinear power spectrum of cold dark matter and baryons and, for the $N$-body codes, also the relative agreement on the bispectrum, halo mass function, and halo bias. We find that the different numerical implementations produce fully consistent results. We can therefore be confident that we can model the impact of massive neutrinos at the sub-percent level in the most common summary statistics. We also provide a code validation pipeline for future reference., Comment: 43 pages, 17 figures, 2 tables; published on behalf of the Euclid Consortium; data available at https://doi.org/10.5281/zenodo.7297976
- Full Text
- View/download PDF
103. Euclid preparation. XXIV. Calibration of the halo mass function in $\Lambda(\nu)$CDM cosmologies
- Author
-
Euclid Collaboration, Castro, T., Fumagalli, A., Angulo, R. E., Bocquet, S., Borgani, S., Carbone, C., Dakin, J., Dolag, K., Giocoli, C., Monaco, P., Ragagnin, A., Saro, A., Sefusatti, E., Costanzi, M., Brun, A. M. C. Le, Corasaniti, P. -S., Amara, A., Amendola, L., Baldi, M., Bender, R., Bodendorf, C., Branchini, E., Brescia, M., Camera, S., Capobianco, V., Carretero, J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillis, B., Grazian, A., Grupp, F., Haugan, S. V. H., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Kermiche, S., Kitching, T., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Marulli, F., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Seidel, G., Sirri, G., Stanco, L., Crespí, P. Tallada, Taylor, A. N., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Andreon, S., Bardelli, S., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Farina, M., Graciá-Carpio, J., Lindholm, V., Neissner, C., Scottez, V., Tenti, M., Zucca, E., Baccigalupi, C., Balaguera-Antolínez, A., Ballardini, M., Bernardeau, F., Biviano, A., Blanchard, A., Borlaff, A. S., Burigana, C., Cabanac, R., Cappi, A., Carvalho, C. S., Casas, S., Castignani, G., Cooray, A., Coupon, J., Courtois, H. M., Davini, S., De Lucia, G., Desprez, G., Dole, H., Escartin, J. A., Escoffier, S., Finelli, F., Ganga, K., Garcia-Bellido, J., George, K., Gozaliasl, G., Hildebrandt, H., Hook, I., Ilić, S., Kansal, V., Keihanen, E., Kirkpatrick, C. C., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Maoli, R., Marcin, S., Martinelli, M., Martinet, N., Matthew, S., Maturi, M., Metcalf, R. B., Morgante, G., Nadathur, S., Nucita, A. A., Patrizii, L., Peel, A., Popa, V., Porciani, C., Potter, D., Pourtsidou, A., Pöntinen, M., Sánchez, A. G., Sakr, Z., Schirmer, M., Sereno, M., Mancini, A. Spurio, Teyssier, R., Valiviita, J., Veropalumbo, A., Viel, M., Centre National d'Études Spatiales [Toulouse] (CNES), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), and Euclid
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Euclid's photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo-finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einstein--de Sitter and standard $\Lambda$CDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the $\Lambda$CDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future mass-observation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference., Comment: 25 pages, 21 figures, 5 tables, 3 appendixes; v2 matches published version
104. J-PLUS: The Javalambre Photometric Local Universe Survey
- Author
-
Cenarro, A. J., Moles, M., Cristóbal-Hornillos, D., Marín-Franch, A., Ederoclite, A., Varela, J., López-Sanjuan, C., Hernández-Monteagudo, C., Angulo, R. E., Ramió, H. Vázquez, Viironen, K., Bonoli, S., Orsi, A. A., Hurier, G., San Roman, I., Greisel, N., Vilella-Rojo, G., Díaz-García, L. A., Logroño-García, R., Gurung-López, S., Daniele Spinoso, Izquierdo-Villalba, D., Aguerri, J. A. L., Allende Prieto, C., Bonatto, C., Carvano, J. M., Chies-Santos, A. L., Daflon, S., Dupke, R. A., Falcón-Barroso, J., Gonçalves, D. R., Jiménez-Teja, Y., Molino, A., Placco, V. M., Solano, E., Whitten, D. D., Abril, J., Antón, J. L., Bello, R., Toledo, S. Bielsa, Castillo-Ramírez, J., Chueca, S., Civera, T., Díaz-Martín, M. C., Domínguez-Martínez, M., Garzarán-Calderaro, J., Hernández-Fuertes, J., Iglesias-Marzoa, R., Iñiguez, C., and Ruiz, J. M. Jiménez
105. Indicadores biológicos de la pesquería de sierra (Scomberomorus sierra) al sur del Golfo de California, México.
- Author
-
Aguirre-Villaseñor, H., Morales-Bojórquez, E., Morán-Angulo, R. E., Madrid-Vera, J., and Valdez-Pineda, M. C.
- Subjects
- *
SIERRA mackerel , *FISHES , *FISHERIES , *GONADS , *SPAWNING , *REPRODUCTION , *FISHING - Abstract
The Pacific sierra (Scomberomorus sierra) fishery was analyzed using commercial data from Mazatlán, Sinaloa, Mexico, from February 2002 to March 2003. Length-frequency data were analyzed to estimate individual growth parameters, as well as the minimum maturity length and minimum catch length of S. sierra. Six age groups were observed for the stock from the southern Gulf of California. Gonad maturity in females begins in April and spawning occurs during May. According to our estimations, the minimum catch length was 398 mm fork length (c. 2 years 10 months), while the minimum maturity length was 443 mm fork length (c. 3 years). When both curves were overlapped, 70% of the catch was represented by females with a fork length less than the size at first maturity, indicating that when females attained the minimum maturity length, a fraction (70%) of them had already been caught; however, during the last 17 fishing seasons, the Pacific sierra landings in Sinaloa have shown an apparent stability. A management strategy and reference points for the exploitation of the fishery are recommendable. [ABSTRACT FROM AUTHOR]
- Published
- 2006
106. J-PLUS: Unveiling the brightest end of the Lyα luminosity function at 2.0 < z < 3.3 over 1000 deg2.
- Author
-
Spinoso, D., Orsi, A., López-Sanjuan, C., Bonoli, S., Viironen, K., Izquierdo-Villalba, D., Sobral, D., Gurung-López, S., Hernán-Caballero, A., Ederoclite, A., Varela, J., Overzier, R., Miralda-Escudé, J., Muniesa, D. J., Vílchez, J. M., Alcaniz, J., Angulo, R. E., Cenarro, A. J., Cristóbal-Hornillos, D., and Dupke, R. A.
- Subjects
- *
STELLAR luminosity function , *LUMINOSITY , *GALACTIC redshift , *QUASARS , *REDSHIFT - Abstract
We present the photometric determination of the bright end of the Lyα luminosity function (LF; at LLyα ≳ 1043.3 erg s−1) within four redshift windows (Δ z < 0.16) in the interval 2.2 ≲ z ≲ 3.3. Our work is based on the Javalambre Photometric Local Universe Survey (J-PLUS) first data release, which provides multiple narrow-band measurements over ∼1000 deg2, with limiting magnitude r ∼ 22. The analysis of high-z Lyα-emitting sources over such a wide area is unprecedented and allows us to select approximately 14 500 hyper-bright (LLyα > 1043.3 erg s−1) Lyα-emitting candidates. We test our selection with two spectroscopic programs at the GTC telescope, which confirm ∼89% of the targets as line-emitting sources, with ∼64% being genuine z ∼ 2.2 quasars (QSOs). We extend the 2.2 ≲ z ≲ 3.3 Lyα LF for the first time above LLyα ∼ 1044 erg s−1 and down to densities of ∼10−8 Mpc−3. Our results unveil the Schechter exponential decay of the brightest-end of the Lyα LF in great detail, complementing the power-law component of previous determinations at 43.3 ≲ Log10(LLyα/erg s−1) ≲ 44. We measure Φ* = (3.33 ± 0.19)×10−6, Log(L*) = 44.65 ± 0.65, and α = −1.35 ± 0.84 as an average over the probed redshifts. These values are significantly different from the typical Schechter parameters measured for the Lyα LF of high-z star-forming Lyman-α emitters (LAEs). This implies that z > 2 AGNs/QSOs (likely dominant in our samples) are described by a structurally different LF from that used to describe z > 2 star-forming LAEs, namely LQSOs* ~ 100LLAEs* L QSOs * ~ 100 L LAEs * $ L^*_{\rm QSOs}\!\sim\!100\,L^*_{\rm LAEs} $ and ΦQSOs* ~ 10−3 ΦLAEs* Φ QSOs * ~ 10 − 3 Φ LAEs * $ \Phi^*_{\rm QSOs}\!\sim\!10^{-3}\,\Phi^*_{\rm LAEs} $ , with the transition between the two LFs happening at LLyα ∼ 1043.5 erg s−1. This supports the scenario in which Lyα-emitting AGNs/QSOs are the most abundant class of z ≳ 2 Lyα emitters at LLyα ≳ 1043.3 erg s−1. Finally, we suggest that a significant number of these z ≳ 2 AGNs/QSOs (∼60% of our samples) are currently misclassified as stars based on their broad-band colours, but are identified for the first time as high-z line-emitters by our narrow-band-based selection. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.