123 results on '"De Munno G"'
Search Results
102. Spin canting in an unprecedented three-dimensional pyrophosphate- and 2,2'-bipyrimidine-bridged cobalt(II) framework.
- Author
-
Marino N, Mastropietro TF, Armentano D, De Munno G, Doyle RP, Lloret F, and Julve M
- Abstract
The three-dimensional cobalt(ii) compound of formula {[Co(2)(P(2)O(7))(bpym)(2)].12H(2)O}(n), where the pyrophosphate and 2,2'-bipyrimidine act as bridging ligands, is a new example of a spin-canted antiferromagnet with T(c) = 19 K.
- Published
- 2008
- Full Text
- View/download PDF
103. New extended magnetic systems based on oxalate and iron(III) ions.
- Author
-
Armentano D, Mastropietro TF, De Munno G, Rossi P, Lloret F, and Julve M
- Abstract
A series of oxalate-bridged iron(III) complexes have been synthesized by the reaction of FeCl 3 with oxalic acid (H 2ox) and XCl, where X is a substituted univalent ammonium or an alkaline cation. We have obtained basically two different types of compounds by varying the nature and the shape of the counterion, with the dimensionality of the resulting product being strongly influenced by the counterion. Three-dimensional (3D) networks of oxo- and oxalato-bridged iron(III) ions of the general formula {X 2[Fe 2O(ox) 2Cl 2]. pH 2O} n have been obtained for X = Li (+) ( 1), Na (+) ( 2), and K (+) ( 3) with p = 4 and X = MeNH 3 (+) ( 4), Me 2NH 2 (+) ( 5), and EtNH 3 (+) ( 6) with p = 2. Similar 3D hydroxo- and oxalato-bridged iron(III) networks of the formula {X[Fe 2(OH)(ox) 2Cl 2].2H 2O} n resulted for X = EtNH 3 (+) ( 7a) and PrNH 3 (+) ( 8). Compound 7a undergoes a solid-to-solid transformation, leading to a new species of the formula {(H 3O)(EtNH 3)[Fe 2O(ox) 2Cl 2].H 2O} n ( 7b). Chainlike compounds of the formula {X 2[Fe 2(ox) 2Cl 4]. pH 2O} n [X = Me 2NH 2 (+)( 9, p = 1), Me 3NH (+) ( 10, p = 2), and Me 4N (+) ( 11, p = 0)] have been obtained for the bulkier alkylammonium cations. Magnetic susceptibility measurements in the temperature range 1.9-295 K show the occurrence of weak ferromagnetic ordering due to spin canting in the 3D networks 1- 8, with the value of the critical temperature ( T c) varying with the cation in the range 26 K ( 2) to 70 K ( 8) without significant structural modifications. The last three one-dimensional compounds exhibit the typical behavior of antiferromagnetically coupled chains of interacting spin sextets [ J = -8.3 ( 9), -6.9 ( 10), and -8.4 ( 11) cm (-1) with H = - J summation operator i S i S i+1 ].
- Published
- 2008
- Full Text
- View/download PDF
104. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.
- Author
-
Mastropietro TF, Armentano D, Grisolia E, Zanchini C, Lloret F, Julve M, and De Munno G
- Subjects
- Crystallography, X-Ray, Magnetic Resonance Spectroscopy, Models, Molecular, Copper chemistry, Guanine chemistry
- Abstract
Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].
- Published
- 2008
- Full Text
- View/download PDF
105. X-ray structure of [ReCl4(mu-ox)Cu(pyim)2]: a new heterobimetallic Re(IV)Cu(II) ferrimagnetic chain.
- Author
-
Martínez-Lillo J, Armentano D, De Munno G, Lloret F, Julve M, and Faus J
- Abstract
A new heterobimetallic Re(IV)Cu(II) compound has been prepared and its crystal structure determined by single-crystal X-ray diffraction; magnetic susceptibility measurements show that this compound behaves as a ferrimagnetic chain with significant antiferromagnetic interactions between Re(IV) and Cu(II) metal ions.
- Published
- 2008
- Full Text
- View/download PDF
106. Ligand effects on the structures and magnetic properties of tricyanomethanide-containing copper(II) complexes.
- Author
-
Yuste C, Bentama A, Stiriba SE, Armentano D, De Munno G, Lloret F, and Julve M
- Subjects
- Crystallography, X-Ray, Ligands, Models, Molecular, Molecular Structure, Organometallic Compounds chemical synthesis, Spectrophotometry, Infrared methods, Temperature, Copper chemistry, Magnetics, Nitriles chemistry, Organometallic Compounds chemistry
- Abstract
The preparation, crystal structure and magnetic properties of four heteroleptic copper(II) complexes with the tricyanomethanide (tcm(-)) and the heterocyclic nitrogen donors 3,6-bis(2-pyridyl)pyridazine (dppn), 2,5-bis(2-pyridyl)pyrazine (2,5-dpp), 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) and 2,3-bis(2-pyridyl)quinoxaline (2,3-dpq) are reported, {[Cu(2)(dppn)(OH)(tcm)(2)] x tcm}(n) (1), {[Cu(2,5-dpp)(tcm)] x tcm}(n) (2), {[Cu(2)(2,3-dpp)(2)(tcm)(3)(H(2)O)(0.5)] x tcm x 0.5H(2)O}(n) (3) and [Cu(2,3-dpq)(tcm)(2)](n) (4). 1 has a ladder-like structure with single mu-1,5-tcm ligands forming the sides and a bis-bidentate dppn and a single mu-hydroxo providing the rung. Each copper atom in 1 exhibits a distorted square pyramidal CuN(4)O surrounding: the basal plane is built by the hydroxo-oxygen, a nitrile-nitrogen atom from a tcm group and one pyrazine and a pyridyl nitrogen atoms from the dppn whereas the apical position is filled by a nitrile-nitrogen atom from a symmetry-related tcm ligand. The structures of 2-4 consists of zig-zag (2 and 3)/linear (4) chains of copper(II) ions which are bridged by either bis-bidentate 2,5-dpp (2) and 2,3-dpp (3) molecules or single mu-1,5-tcm (4) groups. The copper atoms in 2 and 4 are five coordinated with distorted trigonal bipyramidal (2) and square pyramidal (4) CuN(5) surroundings. The axial positions in 2 are occupied by two pyridyl-nitrogen atoms from two 2,5-dpp ligands whereas the trigonal plane is built by a nitrile-nitrogen from a terminally bound tcm group and two pyrazine nitrogen atoms from two 2,5-dpp molecules. The basal plane in 4 is defined by a pyridyl and a pyrazine nitrogen atoms from the bidentate 2,3-dpq ligand and two nitrile nitrogen atoms from two tcm groups (one terminal and the other bridging) whereas the apical position is filled by a nitrile nitrogen from another tcm ligand. The crystallographically independent copper atoms in 3 [Cu(1) and Cu(2)] exhibit elongated octahedral geometries being defined by four nitrogen atoms from two 2,3-dpp groups [Cu(1) and Cu(2)] either two terminally bound tcm ligands [Cu(1)] or a water molecule and a monodentate tcm ligand [Cu(2)] in cis positions. Magnetic susceptibility measurements for 1-4 in the temperature range 1.9-295 K reveal the occurrence of strong [J ca.-1000 cm(-1) (1); H = -JS(A) x S(B)] and weak [J = -0.13 (2), -0.67 (3) and -0.18 cm(-1) (4); H = -J Sigma(I)S(i) x S(i+1)] antiferromagnetic interactions in agreement with the different nature of the exchange pathways involved, diazine and single mu-hydroxo (1) and the extended 2,5-dpp (2), 2,3-dpp (3) and single mu-1,5-tcm (4) bridges with copper-copper separations of 3.363(8) (1), 7.111(1) (2), 6.823(1) and 7.056(1) (3) and 7.446(1) A (4).
- Published
- 2007
- Full Text
- View/download PDF
107. A new octanuclear copper(II)-nucleoside wheel.
- Author
-
Armentano D, Mastropietro TF, Julve M, Rossi R, Rossi P, and De Munno G
- Published
- 2007
- Full Text
- View/download PDF
108. A novel series of rhenium-bipyrimidine complexes: synthesis, crystal structure and electrochemical properties.
- Author
-
Chiozzone R, González R, Kremer C, Cerdá MF, Armentano D, De Munno G, Martínez-Lillo J, and Faus J
- Abstract
Four novel rhenium complexes of formula [ReCl(4)(bpym)] (1), [ReBr(4)(bpym)] (2) PPh(4)[ReCl(4)(bpym)] (3) and NBu(4)[ReBr(4)(bpym)] (4) (bpym = 2,2'-bipyrimidine, PPh(4) = tetraphenylphosphonium cation and NBu(4) = tetrabutylammonium cation), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. The structures of 1 and 2 consist of [ReX(4)(bpym)] molecules held together by van der Waals forces. In both complexes the Re(iv) central atom is surrounded by four halide anions and two nitrogen atoms of a bpym bidentate ligand in a distorted octahedral environment. The structures of 3 and 4 consist of [ReX(4)(bpym)](-) anions and PPh(4)(+) () or NBu(4)(+) (4) cations. The coordination sphere of the Re(iii) metal ion is the same as in 1 and 2, respectively. However, whereas the Re-X bonds are longer the Re-N bonds are shorter than in 1 and 2. This fact reveals that the bpym ligand forms a stronger bond with Re(iii) than with Re(iv) resulting in a stabilisation of the lower oxidation state. [ReX(4)(bpym)] complexes are easily reduced, chemically and electrochemically, to the corresponding [ReX(4)(bpym)](-) anions. A voltammetric study shows that the electron transference is a reversible process characterized by formal redox potentials of +0.19 V (1) and +0.32 V (2) vs. NHE, in acetonitrile as solvent.
- Published
- 2007
- Full Text
- View/download PDF
109. A Heterotetranuclear [NiIIReIV3] single-molecule magnet.
- Author
-
Martínez-Lillo J, Armentano D, De Munno G, Wernsdorfer W, Julve M, Lloret F, and Faus J
- Abstract
The reaction of [ReIVCl4(ox)]2- and fully solvated Ni2+ ions in a MeCN/i-PrOH mixture affords the heterotetranuclear complex (NBu4)4[Ni{ReCl4(ox)}3] where the rhenium precursor acts as a bidentate ligand toward the nicke(II) ion through the oxalate group. The mixed 3d-5d species exhibits intramolecular ferromagnetic coupling and it behaves like a single-molecule magnet.
- Published
- 2006
- Full Text
- View/download PDF
110. Ligand effects on the structures of extended networks of dicyanamide-containing transition-metal ions.
- Author
-
Armentano D, De Munno G, Guerra F, Julve M, and Lloret F
- Abstract
The structural characterization of a series of complexes of formula [M(dca)2L]n, where dca = dicyanamide, L = 1,10-phenanthroline (phen) [1-4] and 2,9-dimethylphenanthroline (2,9-dmphen) [9-12], and M = Mn (1 and 9), Fe (2 and 10), Co (3 and 11), and Ni (4 and 12), has revealed the effect of the presence of the methyl substituents of L on the resulting network. The structure of [Mn(dca)2(phen)]n (1), which is identical to those of 2-4, together with the investigation of its magnetic properties in the temperature range of 77-300 K were reported elsewhere. The use of the 4,7-dimethylphenanthroline (4,7-dmphen) as the co-ligand yielded a series of compounds of formula [M(dca)2(4,7-dmphen)]n [M = Mn (5), Fe (6), Co (7), and Ni (8)], which are isostructural with 1-4. Compounds containing phen (1-4) and 4,7-dmphen (5-8) are made of two-dimensional grids of metal atoms, each metal atom being linked to three other metal centers through single (three metal atoms involved) and double (two metal atoms involved) dca bridges exhibiting the mu-1,5 coordination mode. The isostructural complexes [M(dca)2(2,9-dmphen)]n (9-12) also have a sheetlike structure, the metal atoms in each layer being linked by two single and one double mu-1,5-dca units, as in 1-8. However, the topology of the network in 9-12 is different from that in 1-8 because of the different arrangement of the two single mu-1,5 dca bridges: cis in 1-8 versus trans in 9-12. The magnetic study of compounds 1-12 in the temperature range of 1.9-290 K has revealed the occurrence of weak ferromagnetic (M = Ni) and antiferromagnetic interactions (M = Mn, Fe, and Co). The different magnetic behavior in 1-12 was analyzed in the light of their structures, and the values of the magnetic interactions were compared to those of related systems.
- Published
- 2006
- Full Text
- View/download PDF
111. Intermolecular proton transfer in solid phase: a rare example of crystal-to-crystal transformation from hydroxo- to oxo-bridged iron(III) molecule-based magnet.
- Author
-
Armentano D, De Munno G, Mastropietro TF, Julve M, and Lloret F
- Abstract
Intermolecular proton transfer in solid phase from the hydroxo bridge to a water molecule occurs in a new mu-hydroxo iron(III) compound of formula {EtNH3[Fe2(ox)2Cl2(mu-OH)].2H2O}n leading to a still crystalline compound in which the mu-oxo bridge replaces the mu-hydroxo one. Both three-dimensional compounds exhibit magnetic ordering at Tc ca. 70 K due to a spin canting.
- Published
- 2005
- Full Text
- View/download PDF
112. Synthesis, crystal structures and magnetic properties of cyanide- and phenolate-bridged [M(III)NiII]2 tetranuclear complexes (M=Fe and Cr).
- Author
-
Toma L, Toma LM, Lescouëzec R, Armentano D, De Munno G, Andruh M, Cano J, Lloret F, and Julve M
- Abstract
The binuclear complex NiII2L(H2O)2(ClO4)2(1) and the neutral tetranuclear bimetallic compounds [{M(III)(phen)(CN)4}2{NiII2L(H2O)2}].2CH3CN with M=Fe (2) and Cr (3)[H2L=11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.1(9,13)]hexacosa-2,7,9,11,13(26),14,19,21(25),22,24-decaene-25,26-diol] have been synthesized and the structures of and determined by single crystal X-ray diffraction. and are isostructural compounds whose structure is made up of centrosymmetric binuclear cations [Ni2(L)(H2O)2]2+ and two peripheral [M(phen)(CN)4]- anions [M=Fe (2) and Cr (3)] acting as monodentate ligands towards the nickel atoms through one of their four cyanide nitrogen atoms. The environment of the metal atoms in 2 and 3 is six-coordinated: two phen-nitrogen and four cyanide-carbon atoms at the iron and chromium atoms and a water molecule, one cyanide-nitrogen and two phenolate-oxygens and two imine-nitrogens from the binucleating ligand L2- at the nickel atom build distorted octahedral surroundings. The values of the FeNi and CrNi separations through the single cyanide bridge are 5.058(1) and 5.174(2)A respectively, whereas the Ni-Ni distances across the double phenolate bridge are 3.098(2)(2) and 3.101(1) A (3). The magnetic properties of have been investigated in the temperature range 1.9-290 K. The magnetic behaviour of corresponds to that of an antiferromagnetically coupled nickel(II) dimer with J=-61.0(1) cm-1, the Hamiltonian being defined as H=-J S(A).S(B). An overall antiferromagnetic behaviour is observed for and with a low-lying singlet spin state. The values of the intramolecular magnetic couplings are J(Fe-Ni)=+17.4(1) cm-1 and J(Ni-Ni(a))=-44.4(1) cm-1 for and J(Cr-Ni)=+11.8(1) cm-1 and J(Ni-Ni(a))=-44.6(1) cm-1 for [H=-J(M-Ni)(S(M).S(Ni)+S(Ma).S(Nia))-J(Ni-Nia)S(Ni)S(Nia)]. Theoretical calculations using methods based on density functional theory (DFT) have been employed on in order to analyze the efficiency of the exchange pathways involved and also to substantiate the exchange coupling parameters.
- Published
- 2005
- Full Text
- View/download PDF
113. Rhenium(IV)-copper(II) heterobimetallic complexes with a bridge malonato ligand. Synthesis, crystal structure, and magnetic properties.
- Author
-
Cuevas A, Chiozzone R, Kremer C, Suescun L, Mombrú A, Armentano D, De Munno G, Lloret F, Cano J, and Faus J
- Abstract
The Re(IV) complex [ReCl4(mal)]2-, in the form of two slightly different salts, (AsPh4)1.5(HNEt3)0.5[ReCl4(mal)] (1a) and (AsPh4)(HNEt3)[ReCl4(mal)] (1b), and the Re(IV)-Cu(II) bimetallic complexes [ReCl4(mu-mal)Cu(phen)2].CH3CN (2), [ReCl4(mu-mal)Cu(bpy)2] (3), and [ReCl4(mu-mal)Cu(terpy)] (4) (mal=malonate dianion, AsPh4=tetraphenylarsonium cation, HNEt3=triethylammonium cation, phen=1,10-phenanthroline, bpy=2,2'-bipyridine and terpy=2,2':6',2' '-terpyridine) have been synthesized and the structures of 1a, 1b, 2, and 3 determined by single-crystal X-ray diffraction. The structures of 1a and 1b are made up of discrete [ReCl4(mal)]2- anions and AsPh4+ and HNEt3+ cations, held together by electrostatic forces and hydrogen bonds. The Re(IV) atom is surrounded by four chloride anions and a bidentate malonate group, in a distorted octahedral environment. The structure of 2 consist of neutral dinuclear units [ReCl4(mu-mal)Cu(phen)2], with the metal ions united through a bridge carboxilato. The environment of Re(IV) is nearly identical to that in the mononuclear complex, and Cu(II) is five coordinate, being surrounded by four nitrogen atoms of two bidentate phen ligands and one oxygen atom of the malonato ligand. In 3, there are also dinuclear units, [ReCl4(mu-mal)Cu(bpy)2], but the Cu(II) ions complete a distorted octahedral coordination by binding with the free malonato oxygen atom of a neighbor unit, resulting in an infinite chain. The magnetic properties of 1-4 were also investigated in the temperature range 2.0-300 K. The magnetic behavior of 1a and 1b is as expected for a Re(IV) complex with a large value of the zero-field splitting (2D ca. 110 cm(-1)). For the bimetallic complexes, the magnetic coupling between Re(IV) and Cu(II) is antiferromagnetic in 2 (J=-0.39 cm(-1)), ferromagnetic in 4 (J=+1.51 cm(-1)), and nearly negligible in 3 (J=-0.09 cm(-1)).
- Published
- 2004
- Full Text
- View/download PDF
114. The cation as a tool to get spin-canted three-dimensional ironIII networks.
- Author
-
Armentano D, De Munno G, Mastropietro TF, Proserpio DM, Julve M, and Lloret F
- Abstract
Alkyl-substituted ammonium cations (X) allow the preparation of a series of spin-canted oxo- and oxalato-bridged three-dimensional iron(III) networks, exhibiting magnetic ordering at T(c) values ranging from 40 to 56 K. The value of T(c) varies with the cation despite the lack of significant structural modifications.
- Published
- 2004
- Full Text
- View/download PDF
115. Magnetic studies on hexahalorhenate(IV) salts of ferrocenium cations [Fe(C5R5)2]2[ReX6] (R = H, CH3; X = Cl, Br, I).
- Author
-
González R, Chiozzone R, Kremer C, Guerra F, De Munno G, Lloret F, Julve M, and Faus J
- Abstract
The hexahalorhenate(IV) salts of formula [Fe(C5H5)2]2[ReX6], with X = Cl (1), Br (2), and I (3), and [Fe(C5Me5)2]2[ReX6], with X = Cl (4), Br (5), and I (6) ([Fe(C5Me5)2]+ = decamethylferrocenium cation), have been synthesized and the structures of 1, 2, and 4 determined by single-crystal X-ray diffraction. 1, 2, and 4 crystallize in the orthorhombic system, space groups Pbca (1 and 2) and Ibam (4), with a = 14.099(2) A, b = 16.125(2) A, and c = 22.133(15) A, for 1, a = 14.317(3) A, b = 16.848(3) A, and c = 22.099(2) A for 2, and a = 15.8583(5) A, b = 15.9368(5) A, and c = 16.9816(6) A for 4. The three structures are made up of discrete [ReX6]2- anions and ferrocenium cations held together by electrostatic forces. There are anion-anion contacts in 1 and 2 but only through one direction. The [ReX6]2- octahedra are arranged along the y axis forming chains of Re and X atoms, -Re-X...X-Re-X...X-Re-, where the intermolecular X...X distances are shorter than the van der Waals distances. A somewhat greater separation between the anions occurs in 4. The magnetic properties of 1-6 were investigated in the temperature range 2.0-300 K. 1, 2, 4, and 5 exhibit an antiferromagnetic coupling between the anions, whereas a ferromagnetic coupling between anions and cations is the dominant interaction in 3. 6 behaves as a magnetically isolated compound, its susceptibility being the simple addition of the independent contributions of the uncoupled paramagnetic cations and anions.
- Published
- 2004
- Full Text
- View/download PDF
116. Self-assembling of cytosine nucleoside into triply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidine nucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoretical calculations.
- Author
-
Armentano D, De Munno G, Di Donna L, Sindona G, Giorgi G, Salvini L, and Napoli A
- Subjects
- Dimerization, Hydrogen Bonding, Kinetics, Models, Molecular, Protons, Solutions chemistry, Spectrometry, Mass, Electrospray Ionization, Thermodynamics, X-Ray Diffraction, Acids chemistry, Cytosine chemistry, Pyrimidine Nucleosides chemistry
- Abstract
Electrospray tandem mass spectrometry (ESI-MS/MS) is used to evaluate the assembling of cytosine and thymine nucleosides in the gas phase, through the formation of hydrogen bonded supermolecules. Mixtures of cytidine analogues and homologues deliver in the gas phase proton-bound heterodimers stabilized by multiple interactions, as proven by the kinetics of their dissociation into the corresponding protonated monomers. Theoretical calculations, performed on initial structures of methylcytosine homodimers available in the literature, converged to a minimized structure whereby the two pyrimidine rings interact through the formation of three hydrogen bonds of similar energy. The crystallographic data here reported show the equivalency of the two interacting pyrimidines which is attributable to the presence of an inversion center. Thymine and uracil pyrimidyl nucleosides form, by ESI, gaseous proton-bound dimers. The kinetic of their dissociation into the related protonated monomers shows that the nucleobases are weekly interacting through a single hydrogen bond. The minimized structure of the protonated heterodimer formed by thymine and N-1-methylthymine confirmed the existence of mainly one hydrogen bond which links the two nucleobases through the O4 oxygens. No crystallographic data exists on thymine proton-bound species, nor have we been able to obtain these aggregates in the solid phase. The gaseous phase, under high vacuum conditions, seems therefore a suitable environment where vanishing structures produced by ESI can be studied with a good degree of approximation.
- Published
- 2004
- Full Text
- View/download PDF
117. Magnetic studies on hexaiodorhenate(IV) salts of univalent cations. Spin canting and magnetic ordering in K2[ReI6] with Tc = 24 K.
- Author
-
González R, Chiozzone R, Kremer C, De Munno G, Nicolò F, Lloret F, Julve M, and Faus J
- Abstract
The ionic salts of rhenium(IV) of formula (Cat)(2)[ReI(6)] with Cat = Li(+) (1), Na(+) (2), K(+) (3), Rb(+) (4), Cs(+) (5), NH(4)(+) (6), and AsPh(4)(+) (7) [AsPh(4)(+) = tetraphenylarsonium cation] have been synthesized, and the structures of two of them (namely, 3 and 6) were determined by single-crystal X-ray diffraction. 3 crystallizes in the monoclinic system, space group Pn, with a = 7.815(1) A, b = 7.874(1) A, c = 11.335(1) A, beta = 90.38(1) degrees, and Z = 2 whereas 6 crystallizes in the tetragonal system, space group P4/mnc, with a = 7.881(1) A, b = 7.881(1) A, c = 11.474(2) A, and Z = 2. The structures of 3 and 6 are made up of discrete [ReI(6)](2)(-) anions and K(+) (3) or NH(4)(+) (6) cations held together by electrostatic forces (3 and 6) and N-H.I hydrogen bonds (6). The rhenium(IV) cation in 3 and 6 is surrounded by six iodide ligands in an octahedral environment with the Re-I bond lengths varying in a very narrow range [2.704(3)-2.738(3) and 2.716(1)-2.722(2) A for 3 and 6, respectively]. The [ReI(6)](2)(-) anions in 6 describe a tetragonally distorted body-centered cubic structure. In 3, the arrangement of these units is similar but more distorted. The different arrangement of the anions in 3 and 6 accounts for the centrosymmetric (6) and non-centrosymmetric (3) structures observed. The magnetic properties of 1-7 were investigated in the temperature range 2.0-300 K. The magnetic behavior of 7 is that of a magnetically diluted Re(IV) complex with a large value of the zero-field splitting of the ground level (|2D| = 49.8 cm(-)(1)) whereas those of 1, 2, and 4-6 are typical of antiferromagnetically coupled systems with susceptibility maxima at 28 (1), 27 (2), 21 (4), 16 (5), and 20 K (6). In the case of compound 3, its magnetic behavior in the high-temperature range is parallel to that observed in the parent salts but below 24 K it is a weak ferromagnet with a canting angle of ca. 1.2 degrees.
- Published
- 2003
- Full Text
- View/download PDF
118. Heterobimetallic oxalato-bridged M(II)Re(IV) complexes (M = Mn, Fe, Co, Ni): synthesis, crystal structure, and magnetic properties.
- Author
-
Chiozzone R, González R, Kremer C, De Munno G, Armentano D, Lloret F, Julve M, and Faus J
- Abstract
Four rhenium(IV)-M(II) bimetallic complexes of formula [ReCl(4)(mu-ox)M(dmphen)(2)].CH(3)CN with M = Mn (1), Fe (2), Co (3), and Ni (4) (ox = oxalate anion, dmphen = 2,9-dimethyl-1,10-phenanthroline) have been synthesized and the crystal structures of 1 and 3 determined by single-crystal X-ray diffraction. 1 and 3 are isostructural and crystallize in the monoclinic system, space group P2(1)/c, with a = 16.008(4) A, b = 12.729(2) A, c = 18.909(5) A, beta = 112.70(2) degrees, and Z = 4 for 1 and a = 15.998(4) A, b = 12.665(2) A, c = 18.693(5) A, beta = 112.33(2) degrees, and Z = 4, for 3. The structure of 1 and 3 is made up of neutral [ReCl(4)(mu-ox)M(dmphen)(2)] bimetallic units (M = Mn (1), Co (3)) and acetonitrile molecules of crystallization. M(II) and Re(IV) metal ions exhibit distorted octahedral coordination geometries being bridged by a bis(bidentate) oxalato ligand. The magnetic behavior of 1-4 has been investigated over the temperature range 2.0-300 K. A very weak antiferromagnetic coupling between Re(IV) and Mn(II) occurs in 1 (J = -0.1 cm(-)(1)), whereas a significant ferromagnetic interaction between Re(IV) and M(II) is observed in 2-4 [J = +2.8 (2), +5.2 (3), and +5.9 cm(-)(1) (4)].
- Published
- 2003
- Full Text
- View/download PDF
119. Novel chiral three-dimensional iron(III) compound exhibiting magnetic ordering at T(c) = 40 K.
- Author
-
Armentano D, De Munno G, Lloret F, Palii AV, and Julve M
- Abstract
The preparation and crystal structure determination of the iron(III) compound of formula [(NH(4))(2)[Fe(2)O(ox)(2)Cl(2)].2H(2)O](n) (1) (ox = oxalate dianion) are reported here. Complex 1 crystallizes in the orthorhombic system, space group Fdd2, with a = 14.956(7) A, b = 23.671(9) A, c = 9.026(4) A, and Z = 8. The structure of complex 1 consists of the chiral anionic three-dimensional network [Fe(2)O(ox)(2)Cl(2)](2-) where the iron(III) ions are connected by single oxo and bisbidentate oxalato groups. The metal-metal separations through these bridging ligands are 3.384(2) and 5.496(2) A, respectively. Ammonium cations and crystallization water molecules are located in the helical pseudohexagonal tunnels defined by iron atoms. The longest iron-iron distance in the pseudohexagonal tunnel is 15.778(2) A whereas the shortest one is 8.734(2) A. The iron atoms are hexacoordinated: a terminal chloro ligand and five oxygen atoms, that of the oxo group and four from two cis coordinated oxalate ligands, build a distorted octahedral environment around the metal atom. The Fe-O(oxo) bond distance [1.825(2) A] is significantly shorter than the Fe(III)-O(ox) [average value 2.103(4) A] and Fe(III)-Cl bond distances [2.314(2) A]. Magnetic susceptibility measurements of 1 in the temperature range 2.0-300 K reveal the occurrence of a susceptibility maximum at 195 K and a transition toward a magnetically ordered state in the lower temperature region with T(c) = 40 K. The strong antiferromagnetic coupling through the oxo bridge (J = -46.4 cm(-1), the Hamiltonian being H = -JS(A).S(B)) accounts for the susceptibility maximum whereas a weak spin canting of approximately 0.3 degrees due to the antisymmetric magnetic exchange within the chiral three-dimensional network is responsible for the magnetic ordering. The values of coercive field (H(c)) and remnant magnetization (M(r)) obtained from the hysteresis loop of 1 at 5 K are 4000 G and 0.016 micro(B).
- Published
- 2002
- Full Text
- View/download PDF
120. Synthesis, Crystal Structure, and Magnetic Properties of Tetraphenylarsonium Tetrachloro(oxalato)rhenate(IV) and Bis(2,2'-bipyridine)tetrachloro(&mgr;-oxalato)copper(II)rhenium(IV).
- Author
-
Chiozzone R, González R, Kremer C, De Munno G, Cano J, Lloret F, Julve M, and Faus J
- Abstract
Two new rhenium(IV) compounds of formula (AsPh(4))(2)[ReCl(4)(ox)] (1) and [ReCl(4)(&mgr;-ox)Cu(bipy)(2)] (2) (AsPh(4) = tetraphenylarsonium cation, ox = oxalate anion, and bipy = 2,2'-bipyridine) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. 1 and 2 crystallize in the monoclinic system, space groups P2(1)/c and P2(1)/n, respectively, with a = 22.250(5) Å, b = 11.245(3) Å, c = 19.089(4) Å, beta = 96.59(2) degrees, and Z = 4 for 1 and a = 9.421(2) Å, b = 16.909(4) Å, c = 16.179(4) Å, beta = 93.97(2) degrees, and Z = 4 for 2. The structure of 1 is made up of [ReCl(4)(ox)](2)(-) anions and AsPh(4)(+) cations held united by electrostatic forces. Rhenium(IV) is hexacoordinate, with two oxygens of a chelating ox and four chlorine atoms building a distorted octahedron around the metal atom. There is no contact between the [ReCl(4)(ox)](2)(-) anions, the shortest Re.Re and Cl.Cl distances being 10.345 and 7.209 Å, respectively. This anionic complex is coordinated to a [Cu(bipy)(2)](2+) cation in 2, through one oxalate-oxygen, giving a neutral heterometallic dinuclear unit. The Cu(II) ion shows a very distorted five-coordinated geometry, four bipy-nitrogens occuping the equatorial positions and the oxygen atom the apical one. The basal plane geometry is distorted toward the tetrahedron, the dihedral angle between the mean planes of the two bipy ligands is 37.6(2) degrees. These [ReCl(4)(&mgr;-ox)Cu(bipy)(2)] units are arranged in such a way that a chlorine atom of one of them points toward the copper atom of the neighboring one, forming helicoid chains. The intrachain Re.Cu distances through chloro and oxalato bridges are 4.658 and 4.798 Å, respectively. The magnetic behavior of 1 and 2 has been investigated over the temperature range 1.8-300 K. 1 is a magnetically diluted Re(IV) complex, the great value of zero-field splitting of the ground level (D = 60 cm(-)(1)) accounting for the variation of chi(M)T with T in the low-temperature range. 2 behaves as a ferrimagnetic chain, with weak antiferromagnetic interactions between Re(IV) and Cu(II) through oxalato and single chloro bridges.
- Published
- 1999
- Full Text
- View/download PDF
121. Novel Three-Dimensional Cage Assembly of a &mgr;(4)-Carbonato-Bridged Cobalt(II) Compound [Co(2)(bpm)(H(2)O)(2)(CO(3))(OH)]NO(3).4H(2)O.
- Author
-
Armentano D, De Munno G, Lloret F, and Julve M
- Published
- 1999
- Full Text
- View/download PDF
122. Two-Dimensional Assembling of (2,2'-Bipyrimidine)bis(oxalato)chromate(III) Units through Alkaline Cations.
- Author
-
De Munno G, Armentano D, Julve M, Lloret F, Lescouëzec R, and Faus J
- Published
- 1999
- Full Text
- View/download PDF
123. Synthesis and NMR Investigation of Dirhodium(II) Formamidinate Complexes Containing Bidentate Phosphorus Donors. X-ray Crystal Structure of the Ortho-Metalated Complex Rh(2)(form)(&mgr;-O(2)CCF(3))[(C(6)H(4))(C(6)H(5))P(CH(2))(2)P(C(6)H(5))(2)](sigma-O(2)CCF(3))(p-toluidine).
- Author
-
Tresoldi G, De Munno G, Nicolò F, Lo Schiavo S, and Piraino P
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.