101. Modeling the Impact of Cardiopulmonary Irradiation on Overall Survival in NRG Oncology Trial RTOG 0617.
- Author
-
Thor M, Deasy JO, Hu C, Gore E, Bar-Ad V, Robinson C, Wheatley M, Oh JH, Bogart J, Garces YI, Kavadi VS, Narayan S, Iyengar P, Witt JS, Welsh JW, Koprowski CD, Larner JM, Xiao Y, and Bradley J
- Subjects
- Adult, Aged, Aged, 80 and over, Carcinoma, Non-Small-Cell Lung diagnosis, Carcinoma, Non-Small-Cell Lung mortality, Carcinoma, Non-Small-Cell Lung pathology, Chemoradiotherapy adverse effects, Chemoradiotherapy methods, Datasets as Topic, Dose-Response Relationship, Radiation, Female, Heart radiation effects, Humans, Lung pathology, Lung radiation effects, Lung Neoplasms diagnosis, Lung Neoplasms mortality, Lung Neoplasms pathology, Male, Middle Aged, Organs at Risk radiation effects, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted methods, Radiotherapy Planning, Computer-Assisted statistics & numerical data, Risk Assessment methods, Risk Assessment statistics & numerical data, Survival Analysis, Treatment Outcome, Carcinoma, Non-Small-Cell Lung therapy, Chemoradiotherapy statistics & numerical data, Lung Neoplasms therapy, Models, Biological
- Abstract
Purpose: To quantitatively predict the impact of cardiopulmonary dose on overall survival (OS) after radiotherapy for locally advanced non-small cell lung cancer., Experimental Design: We used the NRG Oncology/RTOG 0617 dataset. The model building procedure was preregistered on a public website. Patients were split between a training and a set-aside validation subset ( N = 306/131). The 191 candidate variables covered disease, patient, treatment, and dose-volume characteristics from multiple cardiopulmonary substructures (atria, lung, pericardium, and ventricles), including the minimum dose to the hottest x% volume (Dx%[Gy]), mean dose of the hottest x% (MOHx%[Gy]), and minimum, mean (Mean[Gy]), and maximum dose. The model building was based on Cox regression and given 191 candidate variables; a Bonferroni-corrected P value threshold of 0.0003 was used to identify predictors. To reduce overreliance on the most highly correlated variables, stepwise multivariable analysis (MVA) was repeated on 1000 bootstrapped replicates. Multivariate sets selected in ≥10% of replicates were fit to the training subset and then averaged to generate a final model. In the validation subset, discrimination was assessed using Harrell c -index, and calibration was tested using risk group stratification., Results: Four MVA models were identified on bootstrap. The averaged model included atria D45%[Gy], lung Mean[Gy], pericardium MOH55%[Gy], and ventricles MOH5%[Gy]. This model had excellent performance predicting OS in the validation subset ( c = 0.89)., Conclusions: The risk of death due to cardiopulmonary irradiation was accurately modeled, as demonstrated by predictions on the validation subset, and provides guidance on the delivery of safe thoracic radiotherapy., (©2020 American Association for Cancer Research.)
- Published
- 2020
- Full Text
- View/download PDF