101. Antinociceptive, antiedematous, and antiallodynic activity of 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives in experimental models of pain.
- Author
-
Dziubina A, Szkatuła D, Gdula-Argasińska J, Kotańska M, and Filipek B
- Subjects
- Analgesics chemical synthesis, Animals, Anti-Inflammatory Agents chemical synthesis, Cyclooxygenase 2 metabolism, Disease Models, Animal, Edema metabolism, Edema physiopathology, Hyperalgesia metabolism, Hyperalgesia physiopathology, Locomotion drug effects, Macrophages drug effects, Macrophages enzymology, Male, Mice, Nitric Oxide metabolism, Nociceptive Pain metabolism, Nociceptive Pain physiopathology, Pyridones chemical synthesis, RAW 264.7 Cells, Rats, Wistar, Receptor, Adenosine A1 metabolism, Signal Transduction, Analgesics pharmacology, Anti-Inflammatory Agents pharmacology, Edema prevention & control, Hyperalgesia prevention & control, Nociceptive Pain prevention & control, Pain Threshold drug effects, Pyridones pharmacology
- Abstract
The aim of the presented study was to examine the potential antinociceptive, antiedematous (anti-inflammatory), and antiallodynic activities of two 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives (DSZ 1 and DSZ 3) in various experimental models of pain. For this purpose, the hot plate test, the capsaicin test, the formalin test, the carrageenan model, and oxaliplatin-induced allodynia tests were performed. In the hot plate test, only DSZ 1 in the highest dose (20 mg/kg) was active but its effects appear to be due to sedatation rather than antinociceptiveness. In capsaicin-induced neurogenic pain model, both compounds displayed a significant antinociceptive activity. In the formalin test, DSZ 1 and DSZ 3 (5-20 mg/kg) revealed antinociceptive activity in both phases but it was more pronounced in the second phase of the test. In this test, pretreatment with caffeine, DPCPX reversed the antinociceptive effect of DSZ 3. On the other hand, pretreatment with L-NAME diminished the antinociceptive effect of DSZ 1. Pretreatment with naloxone did not affect antinociceptive activity of both compounds. Similar to ketoprofen, DSZ 1 and DSZ 3 showed antiedematous (antiinflammatory) and antihyperalgesic activity, and similar to lidocaine local anesthetic activity. Furthermore, both compounds (5 and 10 mg/kg) reduced tactile allodynia in acute and chronic phases of neuropathic pain. In the in vitro studies, DSZ 1 and DSZ 3 reduced the COX-2 level in LPS-activated RAW 264.7 cells, which suggests their anti-inflammatory activity. In conclusion, both DSZ 1 and DSZ 3 displayed broad spectrum of activity in several pain models, including neurogenic, tonic, inflammatory, and chemotherapy-induced peripheral neuropathic pain.
- Published
- 2020
- Full Text
- View/download PDF