816,667 results on '"King AN"'
Search Results
102. An investigation into the causes of race bias in AI-based cine CMR segmentation
- Author
-
Lee, Tiarna, Puyol-Anton, Esther, Ruijsink, Bram, Roujol, Sebastien, Barfoot, Theodore, Ogbomo-Harmitt, Shaheim, Shi, Miaojing, and King, Andrew P.
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Artificial intelligence (AI) methods are being used increasingly for the automated segmentation of cine cardiac magnetic resonance (CMR) imaging. However, these methods have been shown to be subject to race bias, i.e. they exhibit different levels of performance for different races depending on the (im)balance of the data used to train the AI model. In this paper we investigate the source of this bias, seeking to understand its root cause(s) so that it can be effectively mitigated. We perform a series of classification and segmentation experiments on short-axis cine CMR images acquired from Black and White subjects from the UK Biobank and apply AI interpretability methods to understand the results. In the classification experiments, we found that race can be predicted with high accuracy from the images alone, but less accurately from ground truth segmentations, suggesting that the distributional shift between races, which is often the cause of AI bias, is mostly image-based rather than segmentation-based. The interpretability methods showed that most attention in the classification models was focused on non-heart regions, such as subcutaneous fat. Cropping the images tightly around the heart reduced classification accuracy to around chance level. Similarly, race can be predicted from the latent representations of a biased segmentation model, suggesting that race information is encoded in the model. Cropping images tightly around the heart reduced but did not eliminate segmentation bias. We also investigate the influence of possible confounders on the bias observed.
- Published
- 2024
103. Actra: Optimized Transformer Architecture for Vision-Language-Action Models in Robot Learning
- Author
-
Ma, Yueen, Chi, Dafeng, Wu, Shiguang, Liu, Yuecheng, Zhuang, Yuzheng, Hao, Jianye, and King, Irwin
- Subjects
Computer Science - Robotics - Abstract
Vision-language-action models have gained significant attention for their ability to model trajectories in robot learning. However, most existing models rely on Transformer models with vanilla causal attention, which we find suboptimal for processing segmented multi-modal sequences. Additionally, the autoregressive generation approach falls short in generating multi-dimensional actions. In this paper, we introduce Actra, an optimized Transformer architecture featuring trajectory attention and learnable action queries, designed for effective encoding and decoding of segmented vision-language-action trajectories in robot imitation learning. Furthermore, we devise a multi-modal contrastive learning objective to explicitly align different modalities, complementing the primary behavior cloning objective. Through extensive experiments conducted across various environments, Actra exhibits substantial performance improvement when compared to state-of-the-art models in terms of generalizability, dexterity, and precision.
- Published
- 2024
104. First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lal{ă}u, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting.
- Published
- 2024
105. Engineering Rydberg-pair interactions in divalent atoms with hyperfine-split ionization thresholds
- Author
-
Hummel, Frederic, Weber, Sebastian, Moegerle, Johannes, Menke, Henri, King, Jonathan, Bloom, Benjamin, Hofferberth, Sebastian, and Li, Ming
- Subjects
Physics - Atomic Physics ,Quantum Physics - Abstract
Quantum information processing with neutral atoms relies on Rydberg excitation for entanglement generation. While the use of heavy divalent or open-shell elements, such as strontium or ytterbium, has benefits due to their optically active core and a variety of possible qubit encodings, their Rydberg structure is generally complex. For some isotopes in particular, hyperfine interactions are relevant even for highly excited electronic states. We employ multi-channel quantum defect theory to infer the Rydberg structure of isotopes with non-zero nuclear spin and perform non-perturbative Rydberg-pair interaction calculations. We find that due to the high level density and sensitivities to external fields, experimental parameters must be precisely controlled. Specifically in ${}^{87}$Sr, we study an intrinsic F\"orster resonance, unique to divalent atoms with hyperfine-split thresholds, which simultaneously provides line stability with respect to external field fluctuations and enhanced long-range interactions. Additionally, we provide parameters for pair states that can be effectively described by single-channel Rydberg series. The explored pair states provide exciting opportunities for applications in the blockade regime as well as for more exotic long-range interactions such as largely flat, distance-independent potentials., Comment: 12 pages, 7 figures
- Published
- 2024
- Full Text
- View/download PDF
106. Shadow Hamiltonian Simulation
- Author
-
Somma, Rolando D., King, Robbie, Kothari, Robin, O'Brien, Thomas, and Babbush, Ryan
- Subjects
Quantum Physics - Abstract
We present shadow Hamiltonian simulation, a framework for simulating quantum dynamics using a compressed quantum state that we call the "shadow state". The amplitudes of this shadow state are proportional to the expectations of a set of operators of interest. The shadow state evolves according to its own Schr\"odinger equation, and under broad conditions can be simulated on a quantum computer. We analyze a number of applications of this framework to quantum simulation problems. This includes simulating the dynamics of exponentially large systems of free fermions, or exponentially large systems of free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. Shadow Hamiltonian simulation can be extended to simulate expectations of more complex operators such as two-time correlators or Green's functions, and to study the evolution of operators themselves in the Heisenberg picture.
- Published
- 2024
107. Optimizing Charge Transport Simulation for Hybrid Pixel Detectors
- Author
-
Xie, X., Barten, R., Bergamaschi, A., Braham, B., Brückner, M., Carulla, M., Dinapoli, R., Ebner, S., Ferjaoui, K., Fröjdh, E., Greiffenberg, D., Hasanaj, S., Heymes, J., Hinger, V., King, T., Kozlowski, P., Lopez-Cuenca, C., Mezza, D., Moustakas, K., Mozzanica, A., Paton, K. A., Ruder, C., Schmitt, B., Sieberer, P., Thattil, D., and Zhang, J.
- Subjects
Physics - Instrumentation and Detectors - Abstract
To enhance the spatial resolution of the M\"ONCH 25 \textmu m pitch hybrid pixel detector, deep learning models have been trained using both simulation and measurement data. Challenges arise when comparing simulation-based deep learning models to measurement-based models for electrons, as the spatial resolution achieved through simulations is notably inferior to that from measurements. Discrepancies are also observed when directly comparing X-ray simulations with measurements, particularly in the spectral output of single pixels. These observations collectively suggest that current simulations require optimization. To address this, the dynamics of charge carriers within the silicon sensor have been studied using Monte Carlo simulations, aiming to refine the charge transport modeling. The simulation encompasses the initial generation of the charge cloud, charge cloud drift, charge diffusion and repulsion, and electronic noise. The simulation results were validated with measurements from the M\"ONCH detector for X-rays, and the agreement between measurements and simulations was significantly improved by accounting for the charge repulsion., Comment: Prepared for submission to JINST as a proceeding for 25th International Workshops on Radiation Imaging Detectors
- Published
- 2024
108. Embracing Fairness in Consumer Electricity Markets using an Automatic Market Maker
- Author
-
Sweeney, Shaun, King, Chris, O'Malley, Mark, and Shorten, Robert
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Computer Science - Computer Science and Game Theory - Abstract
As consumer flexibility becomes expected, it is important that the market mechanisms which attain that flexibility are perceived as fair. We set out fairness issues in energy markets today, and propose a market design to address them. Consumption is categorised as either essential or flexible with different prices and reliability levels for each. Prices are generated by an Automatic Market Maker (AMM) based on instantaneous scarcity and resource is allocated using a novel Fair Play algorithm. We empirically show the performance of the system over 1 year for 101 UK households and benchmark its performance against more classical approaches., Comment: Under review for inclusion in Special Issue of Applied Energy on `(R)Evolution of Electricity Markets: Designing Smart Electricity Markets for a Decarbonized World'
- Published
- 2024
109. Super Resolution for Renewable Energy Resource Data With Wind From Reanalysis Data (Sup3rWind) and Application to Ukraine
- Author
-
Benton, Brandon N., Buster, Grant, Pinchuk, Pavlo, Glaws, Andrew, King, Ryan N., Maclaurin, Galen, and Chernyakhovskiy, Ilya
- Subjects
Physics - Atmospheric and Oceanic Physics ,Computer Science - Machine Learning - Abstract
With an increasing share of the electricity grid relying on wind to provide generating capacity and energy, there is an expanding global need for historically accurate high-resolution wind data. Conventional downscaling methods for generating these data have a high computational burden and require extensive tuning for historical accuracy. In this work, we present a novel deep learning-based spatiotemporal downscaling method, using generative adversarial networks (GANs), for generating historically accurate high-resolution wind resource data from the European Centre for Medium-Range Weather Forecasting Reanalysis version 5 data (ERA5). We achieve results comparable in historical accuracy and spatiotemporal variability to conventional downscaling by training a GAN model with ERA5 low-resolution input and high-resolution targets from the Wind Integration National Dataset, while reducing computational costs over dynamical downscaling by two orders of magnitude. Spatiotemporal cross-validation shows low error and high correlations with observations and excellent agreement with holdout data across distributions of physical metrics. We apply this approach to downscale 30-km hourly ERA5 data to 2-km 5-minute wind data for January 2000 through December 2023 at multiple hub heights over Eastern Europe. Uncertainty is estimated over the period with observational data by additionally downscaling the members of the European Centre for Medium-Range Weather Forecasting Ensemble of Data Assimilations. Comparisons against observational data from the Meteorological Assimilation Data Ingest System and multiple wind farms show comparable performance to the CONUS validation. This 24-year data record is the first member of the super resolution for renewable energy resource data with wind from reanalysis data dataset (Sup3rWind)., Comment: 58 pages, 31 figures
- Published
- 2024
110. Job Shop Scheduling with Integer Programming, Shifting Bottleneck, and Decision Diagrams: A Computational Study
- Author
-
King, Brannon and Hildebrand, Robert
- Subjects
Mathematics - Optimization and Control - Abstract
We study heuristic algorithms for job shop scheduling problems. We compare classical approaches, such as the shifting bottleneck heuristic with novel strategies using decision diagrams. Balas' local refinement is used to improve feasible solutions. Heuristic approaches are combined with Mixed Integer Programming and Constraint Programming approaches. We discuss our results via computational experiments.
- Published
- 2024
111. Studying Critical Parameters of Superconductor via Diamond Quantum Sensors
- Author
-
Ho, Kin On, Leung, Wai Kuen, Pang, Yiu Yung, Yip, King Yau, Xie, Jianyu, Liu, Yi Man, Rotelli, Aliki Sofia, Leung, Man Yin, Chow, Ho Yin, Lai, Kwing To, Denisenko, Andrej, Keimer, B., Wrachtrup, Jörg, and Yang, Sen
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Superconductivity ,Quantum Physics - Abstract
Critical parameters are the key to superconductivity research, and reliable instrumentations can facilitate the study. Traditionally, one has to use several different measurement techniques to measure critical parameters separately. In this work, we develop the use of a single species of quantum sensor to determine and estimate several critical parameters with the help of independent simulation data. We utilize the nitrogen-vacancy (NV) center in the diamond, which recently emerged as a promising candidate for probing exotic features in condensed matter physics. The non-invasive and highly stable nature provides extraordinary opportunities to solve scientific problems in various systems. Using a high-quality single-crystalline YBa$_{2}$Cu$_{4}$O$_{8}$ (YBCO) as a platform, we demonstrate the use of diamond particles and a bulk diamond to probe the Meissner effect. The evolution of the vector magnetic field, the $H-T$ phase diagram, and the map of fluorescence contour are studied via NV sensing. Our results reveal different critical parameters, including lower critical field $H_{c1}$, upper critical field $H_{c2}$, and critical current density $j_{c}$, as well as verifying the unconventional nature of this high-temperature superconductor YBCO. Therefore, NV-based quantum sensing techniques have huge potential in condensed matter research.
- Published
- 2024
112. A Hamilton-Jacobi approach to road-field reaction-diffusion models
- Author
-
Henderson, Christopher and Lam, King-Yeung
- Subjects
Mathematics - Analysis of PDEs ,35K57, 35D40, 35Q92, 92D25 - Abstract
We consider the road-field reaction-diffusion model introduced by Berestycki, Roquejoffre, and Rossi. By performing a "thin-front limit," we are able to deduce a Hamilton-Jacobi equation with a suitable effective Hamiltonian on the road that governs the front location of the road-field model. Our main motivation is to apply the theory of strong (flux-limited) viscosity solutions in order to determine a control formulation interpretation of the front location. In view of the ecological meaning of the road-field model, this is natural as it casts the invasion problem as one of finding optimal paths that balance the positive growth rate in the field with the fast diffusion on the road. Our main contribution is a nearly complete picture of the behavior on two-road conical domains. When the diffusivities on each road are the same, we show that the propagation speed in each direction in the cone can be computed via those associated with one-road half-space problem. When the diffusivities differ, we show that the speed along the faster road is unchanged, while the speed along the slower road can be enhanced. Along the way we provide a new proof of known results on the one-road half-space problem via our approach., Comment: 50 pages, 7 figures
- Published
- 2024
113. Towards the Discovery of New Elements: Production of Livermorium (Z=116) with 50Ti
- Author
-
Gates, J. M., Orford, R., Rudolph, D., Appleton, C., Barrios, B. M., Benitez, J. Y., Bordeau, M., Botha, W., Campbell, C. M., Chadderton, J., Chemey, A. T., Clark, R. M., Crawford, H. L., Despotopulos, J. D., Dorvaux, O., Esker, N. E., Fallon, P., Folden III, C. M., Gall, B. J. P., Garcia, F. H., Golubev, P., Gooding, J. A., Grebo, M., Gregorich, K. E., Guerrero, M., Henderson, R. A., Herzberg, R. -D., Hrabar, Y., King, T. T., Covo, M. Kireeff, Kirkland, A. S., Krücken, R., Leistenschneider, E., Lykiardopoulou, E. M., McCarthy, M., Mildon, J. A., Müller-Gatermann, C., Phair, L., Pore, J. L., Rice, 1 E., Rykaczewski, K. P., Sammis, B. N., Sarmiento, L. G., Seweryniak, D., Sharp, D. K., Sinjari, A., Steinegger, P., Stoyer, M. A., Szornel, J. M., Thomas, K., Todd, D. S., Vo, P., Watson, V., and Wooddy, P. T.
- Subjects
Nuclear Experiment - Abstract
The $^{244}$Pu($^{50}$Ti,$xn$)$^{294-x}$Lv reaction was investigated at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron facility. The experiment was aimed at the production of a superheavy element with $Z\ge 114$ by irradiating an actinide target with a beam heavier than $^{48}$Ca. Produced Lv ions were separated from the unwanted beam and nuclear reaction products using the Berkeley Gas-filled Separator and implanted into a newly commissioned focal plane detector system. Two decay chains were observed and assigned to the decay of $^{290}$Lv. The production cross section was measured to be $\sigma_{\rm prod}=0.44(^{+58}_{-28})$~pb at a center-of-target center-of-mass energy of 220(3)~MeV. This represents the first published measurement of the production of a superheavy element near the `Island-of-Stability', with a beam of $^{50}$Ti and is an essential precursor in the pursuit of searching for new elements beyond $Z=118$., Comment: Submitted to Physical Review Letters
- Published
- 2024
114. Primordial Black Holes and Scalar-induced Gravitational Waves in Sneutrino Hybrid Inflation
- Author
-
Afzal, Adeela, Ghoshal, Anish, and King, Stephen F.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
We investigate the possibility that primordial black holes (PBHs) can be formed from large curvature perturbations generated during the waterfall phase transition in a supersymmetric scenario where sneutrino is the inflaton in a hybrid inflationary framework. We obtain a spectral index ($n_s \simeq 0.966$), and a tensor-to-scalar ratio ($r\simeq 0.0056-10^{-11}$), consistent with the current Planck data satisfying PBH as dark matter (DM) and detectable Gravitational Wave (GW) signal. Our findings show that the mass of PBH and the peak in the GW spectrum is correlated with the right-handed (s)neutrino mass. We identify parameter space where PBHs can be the entire DM candidate of the universe (with mass $10^{-13}\, M_\odot$) or a fraction of it. This can be tested in future observatories, for example, with amplitude $\Omega_{\rm GW}h^2$ $\sim 10^{-9}$ and peak frequency $f\sim 0.1$ Hz in LISA and $\Omega_{\rm GW}h^2 \sim 10^{-11}$ and peak frequency of $\sim 10$ Hz in ET via second-order GW signals. We study two models of sneutrino inflation: Model$-1$ involves canonical sneutrino kinetic term which predicts the sub-Planckian mass parameter $M$, while the coupling between a gauge singlet and the waterfall field, $\beta$, needs to be quite large whereas, for the model$-2$ involving $\alpha-$attractor canonical sneutrino kinetic term, $\beta$ can take a natural value. Estimating explicitly, we show that both models have mild fine-tuning. We also derive an analytical expression for the power spectrum in terms of the microphysics parameters of the model like (s)neutrino mass, etc. that fits well with the numerical results. The typical reheat temperature for both the models is around $10^{7}-10^{8}$~GeV suitable for non-thermal leptogenesis., Comment: In the revised version texts modified, all results including figures and conclusions remain intact
- Published
- 2024
115. OCTolyzer: Fully automatic analysis toolkit for segmentation and feature extracting in optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) data
- Author
-
Burke, Jamie, Engelmann, Justin, Gibbon, Samuel, Hamid, Charlene, Moukaddem, Diana, Pugh, Dan, Farrah, Tariq, Strang, Niall, Dhaun, Neeraj, MacGillivray, Tom, King, Stuart, and MacCormick, Ian J. C.
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Purpose: To describe OCTolyzer: an open-source toolkit for retinochoroidal analysis in optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) images. Method: OCTolyzer has two analysis suites, for SLO and OCT images. The former enables anatomical segmentation and feature measurement of the en face retinal vessels. The latter leverages image metadata for retinal layer segmentations and deep learning-based choroid layer segmentation to compute retinochoroidal measurements such as thickness and volume. We introduce OCTolyzer and assess the reproducibility of its OCT analysis suite for choroid analysis. Results: At the population-level, choroid region metrics were highly reproducible (Mean absolute error/Pearson/Spearman correlation for macular volume choroid thickness (CT):6.7$\mu$m/0.9933/0.9969, macular B-scan CT:11.6$\mu$m/0.9858/0.9889, peripapillary CT:5.0$\mu$m/0.9942/0.9940). Macular choroid vascular index (CVI) had good reproducibility (volume CVI:0.0271/0.9669/0.9655, B-scan CVI:0.0130/0.9090/0.9145). At the eye-level, measurement error in regional and vessel metrics were below 5% and 20% of the population's variability, respectively. Major outliers were from poor quality B-scans with thick choroids and invisible choroid-sclera boundary. Conclusions: OCTolyzer is the first open-source pipeline to convert OCT/SLO data into reproducible and clinically meaningful retinochoroidal measurements. OCT processing on a standard laptop CPU takes under 2 seconds for macular or peripapillary B-scans and 85 seconds for volume scans. OCTolyzer can help improve standardisation in the field of OCT/SLO image analysis and is freely available here: https://github.com/jaburke166/OCTolyzer., Comment: Main paper: 15 pages, 8 figures, 3 tables. Supplementary material: 6 pages, 6 figures, 6 tables. Submitted to "New Frontiers in Optical Coherence Tomography" Special Issue at ARVO Translational Vision Science & Technology
- Published
- 2024
116. Bounding elastic photon-photon scattering at $\sqrt s \approx 1\,$MeV using a laser-plasma platform
- Author
-
Watt, R., Kettle, B., Gerstmayr, E., King, B., Alejo, A., Astbury, S., Baird, C., Bohlen, S., Campbell, M., Colgan, C., Dannheim, D., Gregory, C., Harsh, H., Hatfield, P., Hinojosa, J., Hollatz, D., Katzir, Y., Morton, J., Murphy, C. D., Nurnberg, A., Osterhoff, J., Pérez-Callejo, G., Põder, K., Rajeev, P. P., Roedel, C., Roeder, F., Salgado, F. C., Samarin, G. M., Sarri, G., Seidel, A., Spindloe, C., Steinke, S., Streeter, M. J. V., Thomas, A. G. R., Underwood, C., Wu, W., Zepf, M., Rose, S. J., and Mangles, S. P. D.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Physics - Plasma Physics - Abstract
We report on a direct search for elastic photon-photon scattering using x-ray and $\gamma$ photons from a laser-plasma based experiment. A gamma photon beam produced by a laser wakefield accelerator provided a broadband gamma spectrum extending to above $E_\gamma = 200$ MeV. These were collided with a dense x-ray field produced by the emission from a laser heated germanium foil at $E_x \approx 1.4$ keV, corresponding to an invariant mass of $\sqrt{s} = 1.22 \pm 0.22$ MeV. In these asymmetric collisions elastic scattering removes one x-ray and one high-energy $\gamma$ photon and outputs two lower energy $\gamma$ photons. No changes in the $\gamma$ photon spectrum were observed as a result of the collisions allowing us to place a 95% upper bound on the cross section of $1.5 \times 10^{15}\,\mu$b. Although far from the QED prediction, this represents the lowest upper limit obtained so far for $\sqrt{s} \lesssim 1$ MeV., Comment: 6 pages, 10 figures
- Published
- 2024
117. Friction and Road Condition Estimation by Combining Cause- and Effect-Based Methods using Bayesian Networks
- Author
-
Volkmann, Björn, Kortmann, Karl-Philipp, Mair, Ulrich, and King, Julian
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Knowledge about the maximum tire-road friction potential is an important factor to ensure the driving stability and traffic safety of the vehicle. Many authors proposed systems that either measure friction related parameters or estimate the friction coefficient directly via a mathematical model. However these systems can be negatively impacted by environmental factors or require a sufficient level of excitation in the form of tire slip, which is often too low under practical conditions. Therefore, this work investigates, if a more robust estimation can be achieved by fusing the information of multiple systems using a Bayesian network, which models the statistical relationship between the sensors and the maximum friction coefficient. First, the Bayesian network is evaluated over its entire domain to compare the inference process to all possible road conditions. After that, the algorithm is applied to data from a test vehicle to demonstrate the performance under real conditions.
- Published
- 2024
118. Supernova Pointing Capabilities of DUNE
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M, Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Pitts, K., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Polo-Toledo, D., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Roeth, A. J., Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Solar and Stellar Astrophysics ,Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage., Comment: 25 pages, 16 figures
- Published
- 2024
119. On the blow-up formula of the Chow weights for polarized toric manifolds
- Author
-
Lee, King Leung and Yotsutani, Naoto
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Differential Geometry ,Mathematics - Symplectic Geometry ,51M20, 53C55, 14M25 - Abstract
Let $X$ be a smooth projective toric variety and let $\widetilde{X}$ be the blow-up manifold of $X$ at finitely many distinct tours invariants points of $X$. In this paper, we give an explicit combinatorial formula of the Chow weight of $\widetilde{X}$ in terms of the base toric manifold $X$ and the symplectic cuts of the Delzant polytope. We then apply this blow-up formula to the projective plane and see the difference of Chow stability between the toric blow-up manifolds and the manifolds of blow-ups at general points. Finally, we detect the blow-up formula of the Futaki-Ono invariant which is an obstruction for asymptotic Chow semistability of a polarized toric manifold., Comment: 23 pages, 3 figures. Comments welcome
- Published
- 2024
120. Scalable, high-fidelity all-electronic control of trapped-ion qubits
- Author
-
Löschnauer, C. M., Toba, J. Mosca, Hughes, A. C., King, S. A., Weber, M. A., Srinivas, R., Matt, R., Nourshargh, R., Allcock, D. T. C., Ballance, C. J., Matthiesen, C., Malinowski, M., and Harty, T. P.
- Subjects
Quantum Physics ,Physics - Atomic Physics - Abstract
The central challenge of quantum computing is implementing high-fidelity quantum gates at scale. However, many existing approaches to qubit control suffer from a scale-performance trade-off, impeding progress towards the creation of useful devices. Here, we present a vision for an electronically controlled trapped-ion quantum computer that alleviates this bottleneck. Our architecture utilizes shared current-carrying traces and local tuning electrodes in a microfabricated chip to perform quantum gates with low noise and crosstalk regardless of device size. To verify our approach, we experimentally demonstrate low-noise site-selective single- and two-qubit gates in a seven-zone ion trap that can control up to 10 qubits. We implement electronic single-qubit gates with 99.99916(7)% fidelity, and demonstrate consistent performance with low crosstalk across the device. We also electronically generate two-qubit maximally entangled states with 99.97(1)% fidelity and long-term stable performance over continuous system operation. These state-of-the-art results validate the path to directly scaling these techniques to large-scale quantum computers based on electronically controlled trapped-ion qubits.
- Published
- 2024
121. Modular Family Symmetry in F-Theory GUTs from the Bottom-up
- Author
-
Basiouris, Vasileios, Romão, Miguel Crispim, King, Stephen F., and Leontaris, George K.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
Finite modular family symmetry can emerge from top-down approaches based on heterotic string theory or Type IIB string theory. We show that, in addition to such approaches, it can also emerge from local F-Theory bottom-up constructions. As a first example of the new approach, we have analysed in detail a concrete F-Theory Fluxed $SU(5)$ Grand Unified Theory (GUT) with modular $S_4$ family symmetry. The model fits the fermion mass and mixing data very well and serves as a demonstration of the bottom-up approach to modular family symmetry in F-Theory fluxed GUTs., Comment: 39 pages, 7 figures
- Published
- 2024
122. Quantum Monte Carlo calculations of electron scattering from $^{12}\text{C}$ in the Short-Time Approximation
- Author
-
Andreoli, Lorenzo, King, Garrett B., Pastore, Saori, Piarulli, Maria, Carlson, Joseph, Gandolfi, Stefano, and Wiringa, Robert B.
- Subjects
Nuclear Theory - Abstract
The Short-Time approximation is a method introduced to evaluate electroweak nuclear response for systems with $A\geq12$, extending the reach of first-principle many-body Quantum Monte Carlo calculations. Using realistic two- and three-body nuclear interactions and consistent one- and two-body electromagnetic currents, we calculate longitudinal and transverse response densities and response functions of $^{12}\text{C}$. We compare the resulting cross sections with experimental data for electron-nucleus scattering, finding good agreement., Comment: 13 pages, 13 figures
- Published
- 2024
123. The infrastructure powering IBM's Gen AI model development
- Author
-
Gershon, Talia, Seelam, Seetharami, Belgodere, Brian, Bonilla, Milton, Hoang, Lan, Barnett, Danny, Chung, I-Hsin, Mohan, Apoorve, Chen, Ming-Hung, Luo, Lixiang, Walkup, Robert, Evangelinos, Constantinos, Salaria, Shweta, Dombrowa, Marc, Park, Yoonho, Kayi, Apo, Schour, Liran, Alim, Alim, Sydney, Ali, Maniotis, Pavlos, Schares, Laurent, Metzler, Bernard, Karacali-Akyamac, Bengi, Wen, Sophia, Chiba, Tatsuhiro, Choochotkaew, Sunyanan, Yoshimura, Takeshi, Misale, Claudia, Elengikal, Tonia, Connor, Kevin O, Liu, Zhuoran, Molina, Richard, Schneidenbach, Lars, Caden, James, Laibinis, Christopher, Fonseca, Carlos, Tarasov, Vasily, Sundararaman, Swaminathan, Schmuck, Frank, Guthridge, Scott, Cohn, Jeremy, Eshel, Marc, Muench, Paul, Liu, Runyu, Pointer, William, Wyskida, Drew, Krull, Bob, Rose, Ray, Wolfe, Brent, Cornejo, William, Walter, John, Malone, Colm, Perucci, Clifford, Franco, Frank, Hinds, Nigel, Calio, Bob, Druyan, Pavel, Kilduff, Robert, Kienle, John, McStay, Connor, Figueroa, Andrew, Connolly, Matthew, Fost, Edie, Roma, Gina, Fonseca, Jake, Levy, Ido, Payne, Michele, Schenkel, Ryan, Malki, Amir, Schneider, Lion, Narkhede, Aniruddha, Moshref, Shekeba, Kisin, Alexandra, Dodin, Olga, Rippon, Bill, Wrieth, Henry, Ganci, John, Colino, Johnny, Habeger-Rose, Donna, Pandey, Rakesh, Gidh, Aditya, Gaur, Aditya, Patterson, Dennis, Salmani, Samsuddin, Varma, Rambilas, Rumana, Rumana, Sharma, Shubham, Mishra, Mayank, Panda, Rameswar, Prasad, Aditya, Stallone, Matt, Zhang, Gaoyuan, Shen, Yikang, Cox, David, Puri, Ruchir, Agrawal, Dakshi, Thorstensen, Drew, Belog, Joel, Tang, Brent, Gupta, Saurabh Kumar, Biswas, Amitabha, Maheshwari, Anup, Gampel, Eran, Van Patten, Jason, Runion, Matthew, Kaki, Sai, Bogin, Yigal, Reitz, Brian, Pritko, Steve, Najam, Shahan, Nambala, Surya, Chirra, Radhika, Welp, Rick, DiMitri, Frank, Telles, Felipe, Arvelo, Amilcar, Chu, King, Seminaro, Ed, Schram, Andrew, Eickhoff, Felix, Hanson, William, Mckeever, Eric, Joseph, Dinakaran, Chaudhary, Piyush, Shivam, Piyush, Chaudhary, Puneet, Jones, Wesley, Guthrie, Robert, Bostic, Chris, Islam, Rezaul, Duersch, Steve, Sawdon, Wayne, Lewars, John, Klos, Matthew, Spriggs, Michael, McMillan, Bill, Gao, George, Kamra, Ashish, Singh, Gaurav, Curry, Marc, Katarki, Tushar, Talerico, Joe, Shi, Zenghui, Malleni, Sai Sindhur, and Gallen, Erwan
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Artificial Intelligence - Abstract
AI Infrastructure plays a key role in the speed and cost-competitiveness of developing and deploying advanced AI models. The current demand for powerful AI infrastructure for model training is driven by the emergence of generative AI and foundational models, where on occasion thousands of GPUs must cooperate on a single training job for the model to be trained in a reasonable time. Delivering efficient and high-performing AI training requires an end-to-end solution that combines hardware, software and holistic telemetry to cater for multiple types of AI workloads. In this report, we describe IBM's hybrid cloud infrastructure that powers our generative AI model development. This infrastructure includes (1) Vela: an AI-optimized supercomputing capability directly integrated into the IBM Cloud, delivering scalable, dynamic, multi-tenant and geographically distributed infrastructure for large-scale model training and other AI workflow steps and (2) Blue Vela: a large-scale, purpose-built, on-premises hosting environment that is optimized to support our largest and most ambitious AI model training tasks. Vela provides IBM with the dual benefit of high performance for internal use along with the flexibility to adapt to an evolving commercial landscape. Blue Vela provides us with the benefits of rapid development of our largest and most ambitious models, as well as future-proofing against the evolving model landscape in the industry. Taken together, they provide IBM with the ability to rapidly innovate in the development of both AI models and commercial offerings., Comment: Corresponding Authors: Talia Gershon, Seetharami Seelam,Brian Belgodere, Milton Bonilla
- Published
- 2024
124. Magnetic structure of $A \le 10$ nuclei using the Norfolk nuclear models with quantum Monte Carlo methods
- Author
-
Chambers-Wall, G., Gnech, A., King, G. B., Pastore, S., Piarulli, M., Schiavilla, R., and Wiringa, R. B.
- Subjects
Nuclear Theory - Abstract
We present Quantum Monte Carlo calculations of magnetic moments, form factors, and densities of $A\le 10$ nuclei within a chiral effective field theory approach. We use the Norfolk two- and three-body chiral potentials and their consistent electromagnetic one- and two-nucleon current operators. We find that two-body contributions to the magnetic moment can be large (up to $\sim33\%$ in $A=9$ systems). We study the model dependence of these observables and place particular emphasis on investigating their sensitivity to using different cutoffs to regulate the many-nucleon operators. Calculations of elastic magnetic form factors for $A\leq 10$ nuclei show excellent agreement with the data out to momentum transfers $q\approx 3$ fm$^{-1}$., Comment: 25 pages, 14 figures, 6 tables
- Published
- 2024
125. Suppressed Electric Quadrupole Collectivity in $^{49}$Ti
- Author
-
Gray, T. J., Allmond, J. M., Benetti, C., Wibisono, C., Baby, L., Gargano, A., Miyagi, T., Macchiavelli, A. O., Stuchbery, A. E., Wood, J. L., Ajayi, S., Aragon, J., Asher, B. W., Barber, P., Bhattacharya, S., Boisseau, R., Christie, J. M., Conley, A. L., De Rosa, P., Dowling, D. T., Esparza, C., Gibbons, J., Hanselman, K., Holt, J. D., Lopez-Caceres, S., Saavedra, E. Lopez, McCann, G. W., Morelock, A., Kelly, B., King, T. T., Rasco, B. C., Sitaraman, V., Tabor, S. L., Temanson, E., Tripathi, V., Wiedenhöver, I., and Yadav, R. B.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
Single-step Coulomb excitation of $^{46,48,49,50}$Ti is presented. A complete set of $E2$ matrix elements for the quintuplet of states in $^{49}$Ti, centered on the $2^+$ core excitation, was measured for the first time. A total of nine $E2$ matrix elements are reported, four of which were previously unknown. $^{49}_{22}$Ti$_{27}$ shows a $20\%$ quenching in electric quadrupole transition strength as compared to its semi-magic $^{50}_{22}$Ti$_{28}$ neighbour. This $20\%$ quenching, while empirically unprecedented, can be explained with a remarkably simple two-state mixing model, which is also consistent with other ground-state properties such as the magnetic dipole moment and electric quadrupole moment. A connection to nucleon transfer data and the quenching of single-particle strength is also demonstrated. The simplicity of the $^{49}$Ti-$^{50}$Ti pair (i.e., approximate single-$j$ $0f_{7/2}$ valence space and isolation of yrast states from non-yrast states) provides a unique opportunity to disentangle otherwise competing effects in the ground-state properties of atomic nuclei, the emergence of collectivity, and the role of proton-neutron interactions., Comment: 8 pages, 5 figures, accepted in Physics Letters B
- Published
- 2024
126. Quantum Monte Carlo calculations of magnetic form factors in light nuclei
- Author
-
Chambers-Wall, G., Gnech, A., King, G. B., Pastore, S., Piarulli, M., Schiavilla, R., and Wiringa, R. B.
- Subjects
Nuclear Theory - Abstract
We present Quantum Monte Carlo calculations of magnetic form factors in $A=6-10$ nuclei, based on Norfolk two- and three-nucleon interactions, and associated one- and two-body electromagnetic currents. Agreement with the available experimental data for $^6$Li, $^7$Li, $^9$Be and $^{10}$B up to values of momentum transfer $q\sim 3$ fm$^{-1}$ is achieved when two-nucleon currents are accounted for. We present a set of predictions for the magnetic form factors of $^7$Be, $^8$Li, $^9$Li, and $^9$C. In these systems, two-body currents account for $\sim40-60\%$ of the total magnetic strength. Measurements in any of these radioactive systems would provide valuable insights on the nuclear magnetic structure emerging from the underlying many-nucleon dynamics. A particularly interesting case is that of $^7$Be, as it would enable investigations of the magnetic structure of mirror nuclei., Comment: 5 pages, 3 figures, 1 table
- Published
- 2024
127. HC-GLAD: Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection
- Author
-
Fu, Yali, Li, Jindong, Liu, Jiahong, Xing, Qianli, Wang, Qi, and King, Irwin
- Subjects
Computer Science - Machine Learning ,Computer Science - Social and Information Networks - Abstract
Unsupervised graph-level anomaly detection (UGAD) has garnered increasing attention in recent years due to its significance. Most existing methods that rely on traditional GNNs mainly consider pairwise relationships between first-order neighbors, which is insufficient to capture the complex high-order dependencies often associated with anomalies. This limitation underscores the necessity of exploring high-order node interactions in UGAD. In addition, most previous works ignore the underlying properties (e.g., hierarchy and power-law structure) which are common in real-world graph datasets and therefore are indispensable factors in the UGAD task. In this paper, we propose a novel Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection (HC-GLAD in short). To exploit high-order node group information, we construct hypergraphs based on pre-designed gold motifs and subsequently perform hypergraph convolution. Furthermore, to preserve the hierarchy of real-world graphs, we introduce hyperbolic geometry into this field and conduct both graph and hypergraph embedding learning in hyperbolic space with the hyperboloid model. To the best of our knowledge, this is the first work to simultaneously apply hypergraph with node group information and hyperbolic geometry in this field. Extensive experiments on 13 real-world datasets of different fields demonstrate the superiority of HC-GLAD on the UGAD task. The code is available at https://github.com/Yali-F/HC-GLAD.
- Published
- 2024
128. Leptogenesis in Realistic Flipped SU(5)
- Author
-
King, Stephen F., Leontaris, George K., Marsili, Luca, and Zhou, Ye-Ling
- Subjects
High Energy Physics - Phenomenology - Abstract
We study thermal leptogenesis in realistic supersymmetric flipped $SU(5)\times U(1)$ unification. As up-type quarks and neutrinos are arranged in the same multiplets, they exhibit strong correlations, and it is commonly believed that the masses of right-handed (RH) neutrinos are too hierarchical to fit the low-energy neutrino data. This pattern generally predicts a lightest RH neutrino too light to yield successful leptogenesis, with any lepton-antilepton asymmetry generated from heavier neutrinos being washed out unless special flavour structures are assumed. We propose a different scenario in which the lightest two RH neutrinos $N_1$ and $N_2$ have nearby masses of order $10^9$ GeV, with thermal leptogenesis arising non-resonantly from both $N_1$ and $N_2$. We show that this pattern is consistent with all data on fermion masses and mixing and predicts the lightest physical left-handed neutrino mass to be smaller than about $10^{-7}$ eV. The Dirac phase, which does not take the maximal CP-violating value, plays an important role in leptogenesis., Comment: 17 pages, 5 figures, 2 tables
- Published
- 2024
129. Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space
- Author
-
Yang, Menglin, Verma, Harshit, Zhang, Delvin Ce, Liu, Jiahong, King, Irwin, and Ying, Rex
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Hyperbolic geometry have shown significant potential in modeling complex structured data, particularly those with underlying tree-like and hierarchical structures. Despite the impressive performance of various hyperbolic neural networks across numerous domains, research on adapting the Transformer to hyperbolic space remains limited. Previous attempts have mainly focused on modifying self-attention modules in the Transformer. However, these efforts have fallen short of developing a complete hyperbolic Transformer. This stems primarily from: (i) the absence of well-defined modules in hyperbolic space, including linear transformation layers, LayerNorm layers, activation functions, dropout operations, etc. (ii) the quadratic time complexity of the existing hyperbolic self-attention module w.r.t the number of input tokens, which hinders its scalability. To address these challenges, we propose, Hypformer, a novel hyperbolic Transformer based on the Lorentz model of hyperbolic geometry. In Hypformer, we introduce two foundational blocks that define the essential modules of the Transformer in hyperbolic space. Furthermore, we develop a linear self-attention mechanism in hyperbolic space, enabling hyperbolic Transformer to process billion-scale graph data and long-sequence inputs for the first time. Our experimental results confirm the effectiveness and efficiency of Hypformer across various datasets, demonstrating its potential as an effective and scalable solution for large-scale data representation and large models., Comment: KDD 2024
- Published
- 2024
130. AI Age Discrepancy: A Novel Parameter for Frailty Assessment in Kidney Tumor Patients
- Author
-
Seshadri, Rikhil, Siva, Jayant, Bartholomew, Angelica, Goebel, Clara, Wallerstein-King, Gabriel, Morato, Beatriz López, Heller, Nicholas, Scovell, Jason, Campbell, Rebecca, Wood, Andrew, Ozery-Flato, Michal, Barros, Vesna, Gabrani, Maria, Rosen-Zvi, Michal, Tejpaul, Resha, Ramesh, Vidhyalakshmi, Papanikolopoulos, Nikolaos, Regmi, Subodh, Ward, Ryan, Abouassaly, Robert, Campbell, Steven C., Remer, Erick, and Weight, Christopher
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Kidney cancer is a global health concern, and accurate assessment of patient frailty is crucial for optimizing surgical outcomes. This paper introduces AI Age Discrepancy, a novel metric derived from machine learning analysis of preoperative abdominal CT scans, as a potential indicator of frailty and postoperative risk in kidney cancer patients. This retrospective study of 599 patients from the 2023 Kidney Tumor Segmentation (KiTS) challenge dataset found that a higher AI Age Discrepancy is significantly associated with longer hospital stays and lower overall survival rates, independent of established factors. This suggests that AI Age Discrepancy may provide valuable insights into patient frailty and could thus inform clinical decision-making in kidney cancer treatment., Comment: 10 pages, 3 figures, 2 tables
- Published
- 2024
131. High-energy spectra of LTT 1445A and GJ 486 reveal flares and activity
- Author
-
Diamond-Lowe, H., King, G. W., Youngblood, A., Brown, A., Howard, W. S., Winters, J. G., Wilson, D. J., France, K., Mendonça, J. M., Buchhave, L. A., Corrales, L., Kreidberg, L., Medina, A. A., Bean, J. L., Berta-Thompson, Z. K., Evans-Soma, T. M., Froning, C., Duvvuri, G. M., Kempton, E. M. -R., Miguel, Y., Pineda, J. S., and Schneider, C.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
The high-energy radiative output, from the X-ray to the ultraviolet, of exoplanet host stars drives photochemical reactions and mass loss in the upper regions of planetary atmospheres. In order to place constraints on the atmospheric properties of the three closest terrestrial exoplanets transiting M dwarfs, we observe the high-energy spectra of the host stars LTT1445A and GJ486 in the X-ray with XMM-Newton and Chandra and in the ultraviolet with HST/COS and STIS. We combine these observations with estimates of extreme ultraviolet flux, reconstructions of the Ly-a lines, and stellar models at optical and infrared wavelengths to produce panchromatic spectra from 1A--20um for each star. While LTT1445Ab, LTT1445Ac, and GJ486b do not possess primordial hydrogen-dominated atmospheres, we calculate that they are able to retain pure CO2 atmospheres if starting with 10, 15, and 50% of Earth's total CO2 budget, respectively, in the presence of their host stars' stellar wind. We use age-activity relationships to place lower limits of 2.2 and 6.6 Gyr on the ages of the host stars LTT1445A and GJ486. Despite both LTT1445A and GJ486 appearing inactive at optical wavelengths, we detect flares at ultraviolet and X-ray wavelengths for both stars. In particular, GJ486 exhibits two flares with absolute energies of 10^29.5 and 10^30.1 erg (equivalent durations of 4357+/-96 and 19724+/-169 s) occurring three hours apart, captured with HST/COS G130M. Based on the timing of the observations, we suggest that these high-energy flares are related and indicative of heightened flaring activity that lasts for a period of days, but our interpretations are limited by sparse time-sampling. Consistent high-energy monitoring is needed to determine the duration and extent of high-energy activity on individual M dwarfs, as well as the population as a whole., Comment: 21 pages, published in A&A
- Published
- 2024
- Full Text
- View/download PDF
132. A comment on comparing optimization on D-Wave and IBM quantum processors
- Author
-
McGeoch, Catherine C., Chern, Kevin, Farré, Pau, and King, Andrew K.
- Subjects
Quantum Physics - Abstract
Recent work [Sachdeva et al.] presented an iterative hybrid quantum variational optimization algorithm designed by Q-CTRL and executed on IBM gate-based quantum processing units (QPUs), claiming a significant performance advantage against a D-Wave quantum annealer. Here we point out major methodological problems with this comparison. Using a simple unoptimized workflow for quantum annealing, we show success probabilities multiple orders of magnitude higher than those reported by [Sachdeva et al.]. These results, which can be reproduced using open-source code and free trial access to a D-Wave quantum annealer, contradict Q-CTRL's claims of superior performance. We also provide a direct comparison between quantum annealing and a recent demonstration of digitized quantum annealing on an IBM processor, showing that analog quantum annealing on a D-Wave QPU reaches far lower energies than digitized quantum annealing on an IBM QPU.
- Published
- 2024
133. GlucOS: Security, correctness, and simplicity for automated insulin delivery
- Author
-
Venugopalan, Hari, Vijayanand, Shreyas Madhav Ambattur, Stanford, Caleb, Crossen, Stephanie, and King, Samuel T.
- Subjects
Computer Science - Cryptography and Security - Abstract
We present GlucOS, a novel system for trustworthy automated insulin delivery. Fundamentally, this paper is about a system we designed, implemented, and deployed on real humans and the lessons learned from our experiences. GlucOS combines algorithmic security, driver security, and end-to-end verification to protect against malicious ML models, vulnerable pump drivers, and drastic changes in human physiology. We use formal methods to prove correctness of critical components and incorporate humans as part of our defensive strategy. Our evaluation includes both a real-world deployment with seven individuals and results from simulation to show that our techniques generalize. Our results show that GlucOS maintains safety and improves glucose control even under attack conditions. This work demonstrates the potential for secure, personalized, automated healthcare systems. Our source code is open source.
- Published
- 2024
134. Entropy-Based Decoding for Retrieval-Augmented Large Language Models
- Author
-
Qiu, Zexuan, Ou, Zijing, Wu, Bin, Li, Jingjing, Liu, Aiwei, and King, Irwin
- Subjects
Computer Science - Computation and Language - Abstract
Augmenting Large Language Models (LLMs) with retrieved external knowledge has proven effective for improving the factual accuracy of generated responses. Despite their success, retrieval-augmented LLMs still face the distractibility issue, where the generated responses are negatively influenced by noise from both external and internal knowledge sources. In this paper, we introduce a novel, training-free decoding method guided by entropy considerations to mitigate this issue. Our approach utilizes entropy-based document-parallel ensemble decoding to prioritize low-entropy distributions from retrieved documents, thereby enhancing the extraction of relevant information of context. Additionally, it incorporates a contrastive decoding mechanism that contrasts the obtained low-entropy ensemble distribution with the high-entropy distribution derived from the model's internal knowledge across layers, which ensures a greater emphasis on reliable external information. Extensive experiments on open-domain question answering datasets demonstrate the superiority of our method.
- Published
- 2024
135. The Use of AI-Robotic Systems for Scientific Discovery
- Author
-
Gower, Alexander H., Korovin, Konstantin, Brunnsåker, Daniel, Kronström, Filip, Reder, Gabriel K., Tiukova, Ievgeniia A., Reiserer, Ronald S., Wikswo, John P., and King, Ross D.
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
The process of developing theories and models and testing them with experiments is fundamental to the scientific method. Automating the entire scientific method then requires not only automation of the induction of theories from data, but also experimentation from design to implementation. This is the idea behind a robot scientist -- a coupled system of AI and laboratory robotics that has agency to test hypotheses with real-world experiments. In this chapter we explore some of the fundamentals of robot scientists in the philosophy of science. We also map the activities of a robot scientist to machine learning paradigms, and argue that the scientific method shares an analogy with active learning. We demonstrate these concepts using examples from previous robot scientists, and also from Genesis: a next generation robot scientist designed for research in systems biology, comprising a micro-fluidic system with 1000 computer-controlled micro-bioreactors and interpretable models based in controlled vocabularies and logic., Comment: 19 pages, book chapter
- Published
- 2024
136. Design and Validation of a Cold Load for Characterization of CMB-S4 Detectors
- Author
-
King, Cesiley L., Gullet, Ian, Anderson, Adam J., Benson, Bradford A., Bihary, Rick, Fan, Haichen, Nagy, Johanna M., Nguyen, Hogan, Ruhl, John E., and Simon, Sara M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the design and validation of a variable temperature cryogenic blackbody source, hereinafter called a cold load, that will be used to characterize detectors to be deployed by CMB-S4, the next-generation ground-based cosmic microwave background (CMB) experiment. Although cold loads have been used for detector characterization by previous CMB experiments, this cold load has three novel design features: (1) the ability to operate from the 1 K stage of a dilution refrigerator (DR), (2) a 3He gas-gap heat switch to reduce cooling time, and (3) the ability to couple small external optical signals to measure detector optical time constants under low optical loading. The efficacy of this design was validated using a 150 GHz detector array previously deployed by the Spider experiment. Thermal tests showed that the cold load can be heated to temperatures required for characterizing CMB-S4's detectors without significantly impacting the temperatures of other cryogenic stages when mounted to the DR's 1 K stage. Additionally, optical tests demonstrated that external signals can be coupled to a detector array through the cold load without imparting a significant optical load on the detectors, which will enable measurements of the CMB-S4 detectors' optical time constants.
- Published
- 2024
137. SLOctolyzer: Fully automatic analysis toolkit for segmentation and feature extracting in scanning laser ophthalmoscopy images
- Author
-
Burke, Jamie, Gibbon, Samuel, Engelmann, Justin, Threlfall, Adam, Giarratano, Ylenia, Hamid, Charlene, King, Stuart, MacCormick, Ian J. C., and MacGillivray, Tom
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Purpose: To describe SLOctolyzer: an open-source analysis toolkit for en face retinal vessels appearing in infrared reflectance scanning laser ophthalmoscopy (SLO) images. Methods: SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module use deep learning methods to delineate retinal anatomy, while the measurement module quantifies key retinal vascular features such as vessel complexity, density, tortuosity, and calibre. We evaluate the segmentation module using unseen data and measure its reproducibility. Results: SLOctolyzer's segmentation module performed well against unseen internal test data (Dice for all-vessels, 0.9097; arteries, 0.8376; veins, 0.8525; optic disc, 0.9430; fovea, 0.8837). External validation against severe retinal pathology showed decreased performance (Dice for arteries, 0.7180; veins, 0.7470; optic disc, 0.9032). SLOctolyzer had good reproducibility (mean difference for fractal dimension, -0.0007; vessel density, -0.0003; vessel calibre, -0.3154 $\mu$m; tortuosity density, 0.0013). SLOctolyzer can process a macula-centred SLO image in under 20 seconds and a disc-centred SLO image in under 30 seconds using a standard laptop CPU. Conclusions: To our knowledge, SLOctolyzer is the first open-source tool to convert raw SLO images into reproducible and clinically meaningful retinal vascular parameters. SLO images are captured simultaneous to optical coherence tomography (OCT), and we believe our software will be useful for extracting retinal vascular measurements from large OCT image sets and linking them to ocular or systemic diseases. It requires no specialist knowledge or proprietary software, and allows manual correction of segmentations and re-computing of vascular metrics. SLOctolyzer is freely available at https://github.com/jaburke166/SLOctolyzer., Comment: 10 pages, 5 figures, 6 tables + Supplementary (7 pages, 10 figures, 4 tables). Submitted for peer review at Translational Vision Science and Technology
- Published
- 2024
138. Applying Ensemble Methods to Model-Agnostic Machine-Generated Text Detection
- Author
-
Ong, Ivan and Quek, Boon King
- Subjects
Computer Science - Computation and Language - Abstract
In this paper, we study the problem of detecting machine-generated text when the large language model (LLM) it is possibly derived from is unknown. We do so by apply ensembling methods to the outputs from DetectGPT classifiers (Mitchell et al. 2023), a zero-shot model for machine-generated text detection which is highly accurate when the generative (or base) language model is the same as the discriminative (or scoring) language model. We find that simple summary statistics of DetectGPT sub-model outputs yield an AUROC of 0.73 (relative to 0.61) while retaining its zero-shot nature, and that supervised learning methods sharply boost the accuracy to an AUROC of 0.94 but require a training dataset. This suggests the possibility of further generalisation to create a highly-accurate, model-agnostic machine-generated text detector.
- Published
- 2024
139. Mitigating Large Language Model Hallucination with Faithful Finetuning
- Author
-
Hu, Minda, He, Bowei, Wang, Yufei, Li, Liangyou, Ma, Chen, and King, Irwin
- Subjects
Computer Science - Computation and Language - Abstract
Large language models (LLMs) have demonstrated remarkable performance on various natural language processing tasks. However, they are prone to generating fluent yet untruthful responses, known as "hallucinations". Hallucinations can lead to the spread of misinformation and cause harm in critical applications. Mitigating hallucinations is challenging as they arise from factors such as noisy data, model overconfidence, lack of knowledge, and the generation process itself. Recent efforts have attempted to address this issue through representation editing and decoding algorithms, reducing hallucinations without major structural changes or retraining. However, these approaches either implicitly edit LLMs' behavior in latent space or suppress the tendency to output unfaithful results during decoding instead of explicitly modeling on hallucination. In this work, we introduce Faithful Finetuning (F2), a novel method that explicitly models the process of faithful question answering through carefully designed loss functions during fine-tuning. We conduct extensive experiments on popular datasets and demonstrate that F2 achieves significant improvements over vanilla models and baselines.
- Published
- 2024
140. SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation
- Author
-
Hu, Minda, Zong, Licheng, Wang, Hongru, Zhou, Jingyan, Li, Jingjing, Gao, Yichen, Wong, Kam-Fai, Li, Yu, and King, Irwin
- Subjects
Computer Science - Computation and Language - Abstract
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG). However, existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries, resulting in sub-optimal performance. To address these limitations, we propose a novel plug-and-play LLM-based retrieval method called Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm. By combining the reasoning capabilities of LLMs with the effectiveness of tree search, SeRTS boosts the zero-shot performance of retrieving high-quality and informative results for RAG. We further enhance retrieval performance by fine-tuning LLMs with Proximal Policy Optimization (PPO) objectives using the trajectories collected by SeRTS as feedback. Controlled experiments using the BioASQ-QA dataset with GPT-3.5-Turbo and LLama2-7b demonstrate that our method significantly improves the performance of the BM25 retriever and surpasses the strong baseline of self-reflection in both efficiency and scalability. Moreover, SeRTS generates higher-quality feedback for PPO training than self-reflection. Our proposed method effectively adapts LLMs to document retrieval tasks, enhancing their ability to retrieve highly relevant documents for RAG in the context of medical knowledge queries. This work presents a significant step forward in leveraging LLMs for accurate and comprehensive biomedical question answering., Comment: This work has been accepted by EMNLP 2024
- Published
- 2024
141. Fundamental constants from photon-photon scattering in three-beam collisions
- Author
-
Macleod, Alexander J. and King, Ben
- Subjects
High Energy Physics - Phenomenology ,Physics - Optics ,Physics - Plasma Physics - Abstract
Direct measurement of the elastic scattering of real photons on an electromagnetic field would allow the fundamental low-energy constants of quantum electrodynamics (QED) to be experimentally determined. We show that scenarios involving the collision of three laser beams have several advantages over conventional two-beam scenarios. The kinematics of a three-beam collision allows for a higher signal-to-noise ratio in the detection region, without the need for polarimetry and separates out contributions from different orders of photon scattering. A planar configuration of colliding a photon beam from an x-ray free electron laser with two optical beams is studied in detail. We show that measurements of elastic photon scattering and vacuum birefringence are possible with currently available technology., Comment: 18 pages, 16 figures. Matches version published in Phys. Rev. A
- Published
- 2024
- Full Text
- View/download PDF
142. MoME: Mixture of Multimodal Experts for Cancer Survival Prediction
- Author
-
Xiong, Conghao, Chen, Hao, Zheng, Hao, Wei, Dong, Zheng, Yefeng, Sung, Joseph J. Y., and King, Irwin
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Survival analysis, as a challenging task, requires integrating Whole Slide Images (WSIs) and genomic data for comprehensive decision-making. There are two main challenges in this task: significant heterogeneity and complex inter- and intra-modal interactions between the two modalities. Previous approaches utilize co-attention methods, which fuse features from both modalities only once after separate encoding. However, these approaches are insufficient for modeling the complex task due to the heterogeneous nature between the modalities. To address these issues, we propose a Biased Progressive Encoding (BPE) paradigm, performing encoding and fusion simultaneously. This paradigm uses one modality as a reference when encoding the other. It enables deep fusion of the modalities through multiple alternating iterations, progressively reducing the cross-modal disparities and facilitating complementary interactions. Besides modality heterogeneity, survival analysis involves various biomarkers from WSIs, genomics, and their combinations. The critical biomarkers may exist in different modalities under individual variations, necessitating flexible adaptation of the models to specific scenarios. Therefore, we further propose a Mixture of Multimodal Experts (MoME) layer to dynamically selects tailored experts in each stage of the BPE paradigm. Experts incorporate reference information from another modality to varying degrees, enabling a balanced or biased focus on different modalities during the encoding process. Extensive experimental results demonstrate the superior performance of our method on various datasets, including TCGA-BLCA, TCGA-UCEC and TCGA-LUAD. Codes are available at https://github.com/BearCleverProud/MoME., Comment: 8 + 1/2 pages, early accepted to MICCAI2024
- Published
- 2024
143. Highly Connected Graph Partitioning: Exact Formulation and Solution Methods
- Author
-
Swamy, Rahul, King, Douglas M., and Jacobson, Sheldon H.
- Subjects
Computer Science - Discrete Mathematics ,Mathematics - Optimization and Control - Abstract
Graph partitioning (GP) and vertex connectivity have traditionally been two distinct fields of study. This paper introduces the highly connected graph partitioning (HCGP) problem, which partitions a graph into compact, size balanced, and $Q$-(vertex) connected parts for any $Q\geq 1$. This problem is valuable in applications that seek cohesion and fault-tolerance within their parts, such as community detection in social networks and resiliency-focused partitioning of power networks. Existing research in this fundamental interconnection primarily focuses on providing theoretical existence guarantees of highly connected partitions for a limited set of dense graphs, and do not include canonical GP considerations such as size balance and compactness. This paper's key contribution is providing a general modeling and algorithmic approach for HCGP, inspired by recent work in the political districting problem, a special case of HCGP with $Q=1$. This approach models $Q$-connectivity constraints as mixed integer programs for any $Q\geq 1$ and provides an efficient branch-and-cut method to solve HCGP. When solution time is a priority over optimality, this paper provides a heuristic method specifically designed for HCGP with $Q=2$. A computational analysis evaluates these methods using a test bed of instances from various real-world graphs. In this analysis, the branch-and-cut method finds an optimal solution within one hour in $82.8\%$ of the instances solved. For $Q=2$, small and sparse instances are challenging for the heuristic, whereas large and sparse instances are challenging for the exact method. Furthermore, this study quantifies the computational cost of ensuring higher connectivity using the branch-and-cut approach, compared to a baseline of ensuring $1$-connectivity. Overall, this work serves as an effective tool to partition a graph into resilient and cohesive parts.
- Published
- 2024
144. Temperature and composition disturbances in the southern auroral region of Jupiter revealed by JWST/MIRI
- Author
-
Rodríguez-Ovalle, Pablo, Fouchet, Thierry, Guerlet, Sandrine, Cavalié, Thibault, Hue, Vincent, López-Puertas, Manuel, Lellouch, Emmanuel, Sinclair, James A., de Pater, Imke, Fletcher, Leigh N., Wong, Michael H., Harkett, Jake, Orton, Glenn S., Hueso, Ricardo, Sánchez-Lavega, Agustín, Stallard, Tom S., Bockelee-Morvan, Dominique, King, Oliver, Roman, Michael T., and Melin, Henrik
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Jupiters south polar region was observed by JWST Mid Infrared Instrument in December 2022. We used the Medium Resolution Spectrometer mode to provide new information about Jupiters South Polar stratosphere. The southern auroral region was visible and influenced the atmosphere in several ways. 1: In the interior of the southern auroral oval, we retrieved peak temperatures at two distinct pressure levels near 0.01 and 1 mbar, with warmer temperatures with respect to non auroral regions of 12 pm 2 K and 37 pm 4 K respectively. A cold polar vortex is centered at 65S at 10 mbar. 2: We found that the homopause is elevated to 590+25-118 km above the 1-bar pressure level inside the auroral oval compared to 460+60-50 km at neighboring latitudes and with an upper altitude of 350 km in regions not affected by auroral precipitation. 3: The retrieved abundance of C2H2 shows an increase within the auroral oval, and it exhibits high abundances throughout the polar region. The retrieved abundance of C2H6 increases towards the pole, without being localized in the auroral oval, in contrast with previous analysis. We determined that the warming at 0.01 mbar and the elevated homopause might be caused by the flux of charged particles depositing their energy in the South Polar Region. The 1 mbar hotspot may arise from adiabatic heating resulting from auroral driven downwelling. The cold region at 10 mbar may be caused by radiative cooling by stratospheric aerosols. The differences in spatial distribution seem to indicate that the hydrocarbons analyzed are affected differently by auroral precipitation.
- Published
- 2024
- Full Text
- View/download PDF
145. FP-Inconsistent: Detecting Evasive Bots using Browser Fingerprint Inconsistencies
- Author
-
Venugopalan, Hari, Munir, Shaoor, Ahmed, Shuaib, Wang, Tangbaihe, King, Samuel T., and Shafiq, Zubair
- Subjects
Computer Science - Cryptography and Security - Abstract
As browser fingerprinting is increasingly being used for bot detection, bots have started altering their fingerprints for evasion. We conduct the first large-scale evaluation of evasive bots to investigate whether and how altering fingerprints helps bots evade detection. To systematically investigate evasive bots, we deploy a honey site incorporating two anti-bot services (DataDome and BotD) and solicit bot traffic from 20 different bot services that purport to sell "realistic and undetectable traffic". Across half a million requests from 20 different bot services on our honey site, we find an average evasion rate of 52.93% against DataDome and 44.56% evasion rate against BotD. Our comparison of fingerprint attributes from bot services that evade each anti-bot service individually as well as bot services that evade both shows that bot services indeed alter different browser fingerprint attributes for evasion. Further, our analysis reveals the presence of inconsistent fingerprint attributes in evasive bots. Given evasive bots seem to have difficulty in ensuring consistency in their fingerprint attributes, we propose a data-driven approach to discover rules to detect such inconsistencies across space (two attributes in a given browser fingerprint) and time (a single attribute at two different points in time). These rules, which can be readily deployed by anti-bot services, reduce the evasion rate of evasive bots against DataDome and BotD by 48.11% and 44.95% respectively.
- Published
- 2024
146. Scintillation Light in SBND: Simulation, Reconstruction, and Expected Performance of the Photon Detection System
- Author
-
SBND Collaboration, Abratenko, P., Acciarri, R., Adams, C., Aliaga-Soplin, L., Alterkait, O., Alvarez-Garrote, R., Andreopoulos, C., Antonakis, A., Arellano, L., Asaadi, J., Badgett, W., Balasubramanian, S., Basque, V., Beever, A., Behera, B., Belchior, E., Betancourt, M., Bhat, A., Bishai, M., Blake, A., Bogart, B., Bogenschuetz, J., Brailsford, D., Brandt, A., Brickner, S., Bueno, A., Camilleri, L., Caratelli, D., Carber, D., Carlson, B., Carneiro, M., Castillo, R., Cavanna, F., Chen, H., Chung, S., Cicala, M. F., Coackley, R., Crespo-Anadón, J. I., Cuesta, C., Dalager, O., Darby, R., Del Tutto, M., Di Benedetto, V., Djurcic, Z., Duffy, K., Dytman, S., Ereditato, A., Evans, J. J., Ezeribe, A., Fan, C., Filkins, A., Fleming, B., Foreman, W., Franco, D., Furic, I., Furmanski, A., Gao, S., Garcia-Gamez, D., Gardiner, S., Ge, G., Gil-Botella, I., Gollapinni, S., Green, P., Griffith, W. C., Guenette, R., Guzowski, P., Hagaman, L., Hamer, A., Hamilton, P., Hernandez-Morquecho, M., Hilgenberg, C., Howard, B., Imani, Z., James, C., Jones, R. S., Jung, M., Junk, T., Kalra, D., Karagiorgi, G., Kelly, K., Ketchum, W., King, M., Klein, J., Kotsiopoulou, L., Kroupová, T., Kudryavtsev, V. A., Larkin, J., Lay, H., LaZur, R., Li, J. -Y., Lin, K., Littlejohn, B., Louis, W. C., Luo, X., Machado, A., Machado, P., Mariani, C., Marinho, F., Mastbaum, A., Mavrokoridis, K., McConkey, N., McCusker, B., Meddage, V., Mendez, D., Mooney, M., Moor, A. F., Moura, C. A., Mulleriababu, S., Navrer-Agasson, A., Nebot-Guinot, M., Nguyen, V. C. L., Nicolas-Arnaldos, F., Nowak, J., Oh, S., Oza, N., Palamara, O., Pallat, N., Pandey, V., Papadopoulou, A., Parkinson, H. B., Paton, J., Paulucci, L., Pavlovic, Z., Payne, D., Pelegrina-Gutiérrez, L., Pimentel, V. L., Plows, J., Psihas, F., Putnam, G., Qian, X., Rajagopalan, R., Ratoff, P., Ray, H., Reggiani-Guzzo, M., Roda, M., Ross-Lonergan, M., Safa, I., Sanchez-Castillo, A., Sanchez-Lucas, P., Schmitz, D. W., Schneider, A., Schukraft, A., Scott, H., Segreto, E., Sensenig, J., Shaevitz, M., Slater, B., Soares-Nunes, M., Soderberg, M., Söldner-Rembold, S., Spitz, J., Spooner, N. J. C., Stancari, M., Stenico, G. V., Strauss, T., Szelc, A. M., Totani, D., Toups, M., Touramanis, C., Tung, L., Valdiviesso, G. A., Van de Water, R. G., Vázquez-Ramos, A., Wan, L., Weber, M., Wei, H., Wester, T., White, A., Wilkinson, A., Wilson, P., Wongjirad, T., Worcester, E., Worcester, M., Yadav, S., Yandel, E., Yang, T., Yates, L., Yu, B., Yu, J., Zamorano, B., Zennamo, J., and Zhang, C.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds., Comment: 21 pages, 17 figures
- Published
- 2024
- Full Text
- View/download PDF
147. Countrywide natural experiment reveals impact of built environment on physical activity
- Author
-
Althoff, Tim, Ivanovic, Boris, Hicks, Jennifer L., Delp, Scott L., King, Abby C., and Leskovec, Jure
- Subjects
Computer Science - Computers and Society - Abstract
While physical activity is critical to human health, most people do not meet recommended guidelines. More walkable built environments have the potential to increase activity across the population. However, previous studies on the built environment and physical activity have led to mixed findings, possibly due to methodological limitations such as small cohorts, few or single locations, over-reliance on self-reported measures, and cross-sectional designs. Here, we address these limitations by leveraging a large U.S. cohort of smartphone users (N=2,112,288) to evaluate within-person longitudinal behavior changes that occurred over 248,266 days of objectively-measured physical activity across 7,447 relocations among 1,609 U.S. cities. By analyzing the results of this natural experiment, which exposed individuals to differing built environments, we find that increases in walkability are associated with significant increases in physical activity after relocation (and vice versa). These changes hold across subpopulations of different genders, age, and body-mass index (BMI), and are sustained over three months after moving.The added activity observed after moving to a more walkable location is predominantly composed of moderate-to-vigorous physical activity (MVPA), which is linked to an array of associated health benefits across the life course. A simulation experiment demonstrates that substantial walkability improvements (i.e., bringing all US locations to the walkability level of Chicago or Philadelphia) may lead to 10.3% or 33 million more Americans meeting aerobic physical activity guidelines. Evidence against residential self-selection confounding is reported. Our findings provide robust evidence supporting the importance of the built environment in directly improving health-enhancing physical activity, in addition to offering potential guidance for public policy activities in this area.
- Published
- 2024
148. The Perils of Pdot
- Author
-
King, Andrew and Lasota, Jean-Pierre
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Schaefer (2024) has recently published observations of binary period derivatives $\dot P$ for 52 cataclysmic variables, and concluded that these strongly conflict with all proposed evolutionary pictures for these systems. We point out once again that using measurements of $\dot P$ is likely in practice to produce misleading evolutionary constraints in almost every case. The one identified exception to this is probably the recently-born X-ray binary SN 2022jli, because of its extremely high mass transfer rate., Comment: 2 pages, no figures
- Published
- 2024
149. Short-range order and local distortions in entropy stabilized oxides
- Author
-
Aamlid, Solveig S., Mugiraneza, Sam, González-Rivas, Mario U., King, Graham, Hallas, Alannah M., and Rottler, Jörg
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Disordered Systems and Neural Networks - Abstract
An idealized high entropy oxide is characterized by perfect chemical disorder and perfect positional order. In this work, we investigate the extent to which short-range order (SRO) and local structural distortions impede that idealized scenario. Working in the entropy stabilized $\alpha$-PbO$_2$ structure, we compare a two-component system, (Ti,Zr)O$_2$, with a four-component system, (Ti,Zr,Hf,Sn)O$_2$, using a combination of experimental and computational approaches. Special quasi-random structures are used in conjunction with density functional theory calculations to investigate the local distortions around specific elements revealing significant local distortions that are relatively insensitive to the number of chemical constituents. Using finite temperature Monte Carlo simulations, we are able to reproduce the previously experimentally observed SRO and transition temperature for the two-component system. However, the ideal configurational entropy is never reached, so SRO is expected even at synthesis temperatures. On the other hand, the order-disorder transition temperature is dramatically lower and experimentally inaccessible for the four-component system, while the configurational entropy is closer to ideal and less sensitive to temperature. Total scattering measurements and pair distribution function analysis of slow-cooled and quenched samples support this view. In general, we demonstrate that SRO effects in high entropy materials are less prevalent as more components are added in, provided the pairwise interaction strengths remain comparable, while local distortions are less affected by the number of components.
- Published
- 2024
- Full Text
- View/download PDF
150. Inferring interaction potentials from stochastic particle trajectories
- Author
-
King, Ella M., Engel, Megan C., Martin, Caroline, Sunol, Alp M., Zhu, Qian-Ze, Schoenholz, Sam S., Manoharan, Vinothan N., and Brenner, Michael P.
- Subjects
Condensed Matter - Soft Condensed Matter ,Physics - Data Analysis, Statistics and Probability - Abstract
Accurate interaction potentials between microscopic components such as colloidal particles or cells are crucial to understanding a range of processes, including colloidal crystallization, bacterial colony formation, and cancer metastasis. Even in systems where the precise interaction mechanisms are unknown, effective interactions can be measured to inform simulation and design. However, these measurements are difficult and time-intensive, and often require conditions that are drastically different from in situ conditions of the system of interest. Moreover, existing methods of measuring interparticle potentials rely on constraining a small number of particles at equilibrium, placing limits on which interactions can be measured. We introduce a method for inferring interaction potentials directly from trajectory data of interacting particles. We explicitly solve the equations of motion to find a form of the potential that maximizes the probability of observing a known trajectory. Our method is valid for systems both in and out of equilibrium, is well-suited to large numbers of particles interacting in typical system conditions, and does not assume a functional form of the interaction potential. We apply our method to infer the interactions of colloidal spheres from experimental data, successfully extracting the range and strength of a depletion interaction from the motion of the particles.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.