William J. Parton, Marc Linderman, Leah K. VanWey, Pramote Prasartkul, Tom Evans, Derek T. Robinson, Li An, Emilio F. Moran, Peter Deadman, Nathan Badenoch, Myron P. Gutmann, Dawn C. Parker, Maggi Kelly, Barbara Entwisle, Ronald R. Rindfuss, Daniel G. Brown, Jianguo Liu, Yothin Sawangdee, Carlos Mena, George P. Malanson, Peter H. Verburg, Jacqueline Geoghegan, Stephen J. Walsh, Joseph P. Messina, and Jefferson Fox
Research on the determinants of land use change and its relationship to vulnerability (broadly defined), biotic diversity and ecosystem services (e.g. Gullison et al. 2007), health (e.g. Patz et al. 2004) and climate change (e.g. van der Werf et al. 2004) has accelerated. Evidence of this increased interest is demonstrated by several examples. Funding agencies in the US (National Institutes of Health, National Science Foundation, National Aeronautics and Space Administration and National Oceanic and Atmospheric Administration) and around the world have increased their support of land use science. In addition to research papers in disciplinary journals, there have been numerous edited volumes and special issues of journals recently (e.g. Gutman et al. 2004; Environment & Planning B 2005; Environment & Planning A 2006; Lambin and Geist 2006; Kok, Verburg and Veldkamp 2007). And in 2006, the Journal of Land Use Science was launched. Land use science is now at a crucial juncture in its maturation process. Much has been learned, but the array of factors influencing land use change, the diversity of sites chosen for case studies, and the variety of modeling approaches used by the various case study teams have all combined to make two of the hallmarks of science, generalization and validation, difficult within land use science. This introduction and the four papers in this themed issue grew out of two workshops which were part of a US National Institutes of Health (NIH) ‘Roadmap’ project. The general idea behind the NIH Roadmap initiative was to stimulate scientific advances by bringing together diverse disciplines to tackle a common, multi-disciplinary scientific problem. The specific idea behind our Roadmap project was to bring together seven multi-disciplinary case study teams, working in areas that could be broadly classified as inland frontiers, incorporating social, spatial and biophysical sciences, having temporal depth on both the social and biophysical sides, and having had long-term funding. Early in our Roadmap project, the crucial importance of modeling, particularly agent-based modeling, for the next phase of land-use science became apparent and additional modelers not affiliated with any of the seven case studies were brought into the project. Since agent-based simulations attempt to explicitly capture human behavior and interaction, they were of special interest. At the risk of oversimplification, it is worth briefly reviewing selected key insights in land use science in the past two decades to set the stage for the papers in this themed issue. One of the earliest realizations, and perhaps most fundamental, was accepting the crucial role that humans play in transforming the landscape, and concomitantly the distinction drawn between land cover (which can be seen remotely) and land use (which, in most circumstances, requires in situ observation; e.g. Turner, Meyer and Skole 1994). The complexity of factors influencing land use change became apparent and led to a variety of ‘box and arrow’ diagrams as conceptual frameworks, frequently put together by committees rarely agreeing with one another on all details, but agreeing among themselves that there were many components (social and biophysical) whose role needed to be measured and understood. A series of case studies emerged, recognizing the wide array of variables that needed to be incorporated, and typically doing so by assembling a multidisciplinary team (Liverman, Moran, Rindfuss and Stern 1998; Entwisle and Stern 2005). The disciplinary make-up of the team strongly influenced what was measured and how it was measured (see Rindfuss, Walsh, Turner, Fox and Mishra 2004; Overmars and Verburg 2005), with limited, if any, coordination across case studies (see Moran and Ostrom 2005 for an exception). In large part, the focus on case studies reflected the infancy of theory in land use science. Teams combined their own theoretical knowledge of social, spatial and ecological change with an inductive approach to understanding land use change – starting from a kitchen sink of variables and an in-depth knowledge of the site to generate theory on the interrelationships between variables and the importance of contextual effects. This lack of coordination in methods, documentation and theory made it very difficult to conduct meta-analyses of the driving factors of land use change across all the case studies to identify common patterns and processes (Geist and Lambin 2002; Keys and McConnell 2005). Recognizing that important causative factors were affecting the entire site of a case study (such as a new road which opens an entire area) and that experimentation was not feasible, computational, statistical and spatially explicit modeling emerged as powerful tools to understand the forces of land use change at a host of space–time scales (Veldkamp and Lambin 2001; Parker, Manson, Janssen, Hoffmann, and Deadman 2003; Verburg, Schot, Dijst and Veldkamp 2004). Increasingly, in recognition of the crucial role of humans in land use change, modeling approaches that represent those actors as agents have emerged as an important, and perhaps the dominant, modeling approach at local levels (Matthews, Gilbert, Roach, Polhil and Gotts 2007). In this introductory paper we briefly discuss some of the major themes that emerged in the workshops that brought together scientists from anthropology, botany, demography, developmental studies, ecology, economics, environmental science, geography, history, hydrology, meteorology, remote sensing, geographic information science, resource management, and sociology. A central theme was the need to measure and model behavior and interactions among actors, as well as between actors and the environment. Many early agent-based models focused on representing individuals and households (e.g. Deadman 1999), but the importance of other types of actors (e.g. governmental units at various levels, businesses, and NGOs) was a persistent theme. ‘Complexity’ was a term that peppered the conversation, and it was used with multiple meanings. But the dominant topic to emerge was comparison and generalization: with multiple case studies and agent-based models blooming, how do we compare across them and move towards generalization? We return to the generalization issue at the end of this introductory paper after a brief discussion of the other themes.