49,775 results on '"Rolland AS"'
Search Results
102. Improved Children's Automatic Speech Recognition Combining Adapters and Synthetic Data Augmentation.
- Author
-
Thomas Rolland and Alberto Abad
- Published
- 2024
- Full Text
- View/download PDF
103. Exploring Adapters with Conformers for Children's Automatic Speech Recognition.
- Author
-
Thomas Rolland and Alberto Abad
- Published
- 2024
- Full Text
- View/download PDF
104. Roots in the Semiring of Finite Deterministic Dynamical Systems.
- Author
-
François Doré, Kévin Perrot, Antonio E. Porreca, Sara Riva, and Marius Rolland
- Published
- 2024
- Full Text
- View/download PDF
105. Real World Field Trial for RIS-Aided Commercial 5G mmWave Wireless Communication.
- Author
-
Ahmad Shokair, Ayoub Toubal, Guillaume Grao, Thibaut Rolland, Youssef Nasser, Dinh Thuy Phan Huy, and Geoffroy Lerosey
- Published
- 2024
- Full Text
- View/download PDF
106. Improving the Energy Efficiency of Compressed Air Systems by Use of Pressure Equalizing Modules
- Author
-
Rolland, Kai J., Budt, Marcus, Rashid, Muhammad H., Series Editor, Kolhe, Mohan Lal, Series Editor, Radgen, Peter, editor, and Bertoldi, Paolo, editor
- Published
- 2024
- Full Text
- View/download PDF
107. Optogenetic and High-Throughput Drug Discovery
- Author
-
Agus, Viviana, Rizzetto, Riccardo, Rutigliano, Lucia, Mollica, Hilaria, Ricci, Fernanda, Cainarca, Silvia, Montag, Katharina, Rolland, Jean-Francois, Hock, Franz J., Section editor, Gralinski, Michael, Section editor, Hock, Franz J., editor, and Pugsley, Michael K., editor
- Published
- 2024
- Full Text
- View/download PDF
108. Baclofen for the Treatment of Alcohol Use Disorder
- Author
-
Agabio, Roberta, Rolland, Benjamin, Leggio, Lorenzo, Di Giovanni, Giuseppe, Editor-in-Chief, and Colombo, Giancarlo, editor
- Published
- 2024
- Full Text
- View/download PDF
109. Logging and Tracer Study—An Integral Part of NDT for Seepage Through Hydraulic Structures
- Author
-
Andrade, Rolland, Chunade, Amol, Suresh Kumar, B., di Prisco, Marco, Series Editor, Chen, Sheng-Hong, Series Editor, Vayas, Ioannis, Series Editor, Kumar Shukla, Sanjay, Series Editor, Sharma, Anuj, Series Editor, Kumar, Nagesh, Series Editor, Wang, Chien Ming, Series Editor, Timbadiya, P. V., editor, Patel, Prem Lal, editor, Singh, Vijay P., editor, and Manekar, Vivek L., editor
- Published
- 2024
- Full Text
- View/download PDF
110. Smoking Status, Nicotine Medication, Vaccination, and COVID-19 Hospital Outcomes: Findings from the COVID EHR Cohort at the University of Wisconsin (CEC-UW) Study
- Author
-
Piasecki, Thomas M, Smith, Stevens S, Baker, Timothy B, Slutske, Wendy S, Adsit, Robert T, Bolt, Daniel M, Conner, Karen L, Bernstein, Steven L, Eng, Oliver D, Lazuk, David, Gonzalez, Alec, Jorenby, Douglas E, D’Angelo, Heather, Kirsch, Julie A, Williams, Brian S, Nolan, Margaret B, Hayes-Birchler, Todd, Kent, Sean, Kim, Hanna, Lubanski, Stan, Yu, Menggang, Suk, Youmi, Cai, Yuxin, Kashyap, Nitu, Mathew, Jomol P, McMahan, Gabriel, Rolland, Betsy, Tindle, Hilary A, Warren, Graham W, An, Lawrence C, Boyd, Andrew D, Brunzell, Darlene H, Carrillo, Victor, Chen, Li-Shiun, Davis, James M, Deshmukh, Vikrant G, Dilip, Deepika, Ellerbeck, Edward F, Goldstein, Adam O, Iturrate, Eduardo, Jose, Thulasee, Khanna, Niharika, King, Andrea, Klass, Elizabeth, Mermelstein, Robin J, Tong, Elisa, Tsoh, Janice Y, Wilson, Karen M, Theobald, Wendy E, and Fiore, Michael C
- Subjects
Prevention ,Tobacco Smoke and Health ,Patient Safety ,Clinical Research ,Immunization ,Tobacco ,6.1 Pharmaceuticals ,Evaluation of treatments and therapeutic interventions ,Respiratory ,Good Health and Well Being ,Humans ,Nicotine ,Smoking Cessation ,Cohort Studies ,Hospital Mortality ,COVID-19 Vaccines ,Universities ,Wisconsin ,COVID-19 ,SARS-CoV-2 ,Tobacco Use Cessation Devices ,Smoking ,Hospitals ,Clinical Sciences ,Public Health and Health Services ,Marketing ,Public Health - Abstract
IntroductionAvailable evidence is mixed concerning associations between smoking status and COVID-19 clinical outcomes. Effects of nicotine replacement therapy (NRT) and vaccination status on COVID-19 outcomes in smokers are unknown.MethodsElectronic health record data from 104 590 COVID-19 patients hospitalized February 1, 2020 to September 30, 2021 in 21 U.S. health systems were analyzed to assess associations of smoking status, in-hospital NRT prescription, and vaccination status with in-hospital death and ICU admission.ResultsCurrent (n = 7764) and never smokers (n = 57 454) did not differ on outcomes after adjustment for age, sex, race, ethnicity, insurance, body mass index, and comorbidities. Former (vs never) smokers (n = 33 101) had higher adjusted odds of death (aOR, 1.11; 95% CI, 1.06-1.17) and ICU admission (aOR, 1.07; 95% CI, 1.04-1.11). Among current smokers, NRT prescription was associated with reduced mortality (aOR, 0.64; 95% CI, 0.50-0.82). Vaccination effects were significantly moderated by smoking status; vaccination was more strongly associated with reduced mortality among current (aOR, 0.29; 95% CI, 0.16-0.66) and former smokers (aOR, 0.47; 95% CI, 0.39-0.57) than for never smokers (aOR, 0.67; 95% CI, 0.57, 0.79). Vaccination was associated with reduced ICU admission more strongly among former (aOR, 0.74; 95% CI, 0.66-0.83) than never smokers (aOR, 0.87; 95% CI, 0.79-0.97).ConclusionsFormer but not current smokers hospitalized with COVID-19 are at higher risk for severe outcomes. SARS-CoV-2 vaccination is associated with better hospital outcomes in COVID-19 patients, especially current and former smokers. NRT during COVID-19 hospitalization may reduce mortality for current smokers.ImplicationsPrior findings regarding associations between smoking and severe COVID-19 disease outcomes have been inconsistent. This large cohort study suggests potential beneficial effects of nicotine replacement therapy on COVID-19 outcomes in current smokers and outsized benefits of SARS-CoV-2 vaccination in current and former smokers. Such findings may influence clinical practice and prevention efforts and motivate additional research that explores mechanisms for these effects.
- Published
- 2023
111. Building Cross-Site and Cross-Network collaborations in critical zone science
- Author
-
Arora, Bhavna, Kuppel, Sylvain, Wellen, Christopher, Oswald, Claire, Groh, Jannis, Payandi-Rolland, Dahédrey, Stegen, James, and Coffinet, Sarah
- Subjects
Built Environment and Design ,Architecture ,Critical zone ,Watershed ,Cross -site synthesis ,Data harmonization ,Interdisciplinary ,Available datasets ,Environmental Engineering - Abstract
The critical zone (CZ) includes natural and anthropogenic environments, where life, energy and matter cycles combine in complex interactions in time and space. Critical zone observatories (CZOs) have been established around the world, yet their limitations in space and duration of observations, as well as the oft-existing dominant disciplinary research field(s) of each CZO may limit the transferability of the local knowledge to other settings or hinder integrative CZ understanding. In this regard, this review advocates for cross-site cross-network collaborations in CZ sciences. We posit that this type of collaboration is becoming indispensable for understanding past trends and future trajectories of the CZ, in the context of fast-developing and widespread environmental changes. Aided by a series of cyberseminars and a community survey, we highlight some of the existing cross-site initiatives, tools and techniques, and the cross-cutting science questions that could benefit from such cross-network syntheses, in various types of CZ settings (montane, alpine, arctic, managed and agricultural environments, lakes, wetlands, streams, landscapes disturbed by drought and/or wildfire, etc.). This review also identifies and discusses the major and legitimate concerns and obstacles for a collaborative CZ approach, including data harmonization and integration of social sciences, and proposes tentative ways forward.
- Published
- 2023
112. Methods of density estimation for pedestrians moving in small groups without a spatial boundary
- Author
-
Mullick, Pratik, Appert-Rolland, Cécile, Warren, William H., and Pettré, Julien
- Subjects
Physics - Physics and Society - Abstract
For a group of pedestrians without any spatial boundaries, the methods of density estimation is a wide area of research. Besides, there is a specific difficulty when the density along one given pedestrian trajectory is needed in order to plot an `individual-based' fundamental diagram. We illustrate why several methods become ill-defined in this case. We then turn to the widely used Voronoi-cell based density estimate. We show that for a typical situation of crossing flows of pedestrians, Voronoi method has to be adapted to the small sample size. We conclude with general remarks about the meaning of density measurements in such context., Comment: 8 pages, 4 figures. Accepted for Traffic and Granular Flow 2022
- Published
- 2022
- Full Text
- View/download PDF
113. 300 GHz wireless link based on an integrated Kerr soliton comb
- Author
-
Tetsumoto, Tomohiro and Rolland, Antoine
- Subjects
Physics - Optics ,Electrical Engineering and Systems Science - Signal Processing ,Physics - Applied Physics - Abstract
A Kerr microresonator frequency comb has enabled the generation of low-phase-noise millimeter- and terahertz-waves in conjunction with an ultrafast photodiode. It is intriguing to employ the new light source in wireless communication at above 100 GHz band, where a carrier signal with a high signal-to-noise ratio is desired to achieve higher data rates. In this study, we demonstrate two simple and efficient architectures of wireless links based on a microresonator comb. We show experimentally that simultaneous modulation and detection of multiple comb lines result in >10 times stronger modulation signal strength than two-line detection at a receiver. Successful transmission of complex modulation format up to 64 quadrature amplitude modulation proves that a microresonator comb and the proposed modulation method are effective in modern wireless communication., Comment: 14 pages, 8 figures
- Published
- 2022
114. Vizaj -- An interactive javascript tool for visualizing spatial networks
- Author
-
Rolland, Thibault and Fallani, Fabrizio De Vico
- Subjects
Physics - Physics and Society ,Electrical Engineering and Systems Science - Systems and Control ,Quantitative Biology - Neurons and Cognition - Abstract
In many fields of science and technology we are confronted with complex networks. Making sense of these networks often require the ability to visualize and explore their intermingled structure consisting of nodes and links. To facilitate the identification of significant connectivity patterns, many methods have been developed based on the rearrangement of the nodes so as to avoid link criss-cross. However, real networks are often embedded in a geometrical space and the nodes code for an intrinsic physical feature of the system that one might want to preserve. For these spatial networks, it is therefore crucial to find alternative strategies operating on the links and not on the nodes. Here, we introduce Vizaj a javascript web application to visualize spatial networks based on optimized geometrical criteria that reshape the link profiles. While optimized for 3D networks, Vizaj can also be used for 2D networks and offers the possibility to interactively customize the visualization via several controlling parameters, including network filtering and the effect of internode distance on the link trajectories. Vizaj is further equipped with additional options allowing to improve the final aesthetics, such as the color/size of both nodes and links, zooming/rotating/translating, and superimposing external objects. Vizaj is an open-source software which can be freely downloaded and updated via a github repository. Here, we provide a detailed description of its main features and algorithms together with a guide on how to use it. Finally, we validate its potential on several synthetic and real spatial networks from infrastructural to biological systems. We hope that Vizaj will help scientists and practitioners to make sense of complex networks and provide aesthetic while informative visualizations.
- Published
- 2022
115. Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abbott, R., Abe, H., Acernese, F., Ackley, K., Adhikari, N., Adhikari, R. X., Adkins, V. K., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Allocca, A., Altin, P. A., Amato, A., Anand, C., Anand, S., Ananyeva, A., Anderson, S. B., Anderson, W. G., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Angelova, S. V., Ansoldi, S., Antelis, J. M., Antier, S., Apostolatos, T., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Arène, M., Aritomi, N., Arnaud, N., Arogeti, M., Aronson, S. M., Asada, H., Asali, Y., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Aubin, F., AultONeal, K., Austin, C., Babak, S., Badaracco, F., Bader, M. K. M., Badger, C., Bae, S., Bae, Y., Baer, A. M., Bagnasco, S., Bai, Y., Baird, J., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Balsamo, A., Baltus, G., Banagiri, S., Banerjee, B., Bankar, D., Barayoga, J. C., Barbieri, C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Barton, M. A., Bartos, I., Basak, S., Bassiri, R., Basti, A., Bawaj, M., Bayley, J. C., Bazzan, M., Becher, B. R., Bécsy, B., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belahcene, I., Benedetto, V., Beniwal, D., Benjamin, M. G., Bennett, T. F., Bentley, J. D., BenYaala, M., Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bhandare, R., Bhandari, A. V., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Bini, S., Birney, R., Birnholtz, O., Biscans, S., Bischi, M., Biscoveanu, S., Bisht, A., Biswas, B., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blair, C. D., Blair, D. G., Blair, R. M., Bobba, F., Bode, N., Boër, M., Bogaert, G., Boldrini, M., Bolingbroke, G. N., Bonavena, L. D., Bondu, F., Bonilla, E., Bonnand, R., Booker, P., Boom, B. A., Bork, R., Boschi, V., Bose, N., Bose, S., Bossilkov, V., Boudart, V., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P. R., Bramley, A., Branch, A., Branchesi, M., Brau, J. E., Breschi, M., Briant, T., Briggs, J. H., Brillet, A., Brinkmann, M., Brockill, P., Brooks, A. F., Brooks, J., Brown, D. D., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cadonati, L., Caesar, M., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callaghan, J. D., Callister, T. A., Calloni, E., Cameron, J., Camp, J. B., Canepa, M., Canevarolo, S., Cannavacciuolo, M., Cannon, K. C., Cao, H., Cao, Z., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carney, M. F., Carpinelli, M., Carrillo, G., Carullo, G., Carver, T. L., Diaz, J. Casanueva, Casentini, C., Castaldi, G., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Subrahmanya, S. Chalathadka, Champion, E., Chan, C. -H., Chan, C., Chan, C. L., Chan, K., Chan, M., Chandra, K., Chang, I. P., Chanial, P., Chao, S., Chapman-Bird, C., Charlton, P., Chase, E. A., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, C., Chen, D., Chen, H. Y., Chen, J., Chen, K., Chen, X., Chen, Y. -B., Chen, Y. -R., Chen, Z., Cheng, H., Cheong, C. K., Cheung, H. Y., Chia, H. Y., Chiadini, F., Chiang, C-Y., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Choudhary, R. K., Choudhary, S., Christensen, N., Chu, Q., Chu, Y-K., Chua, S. S. Y., Chung, K. W., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciobanu, A. A., Ciolfi, R., Cipriano, F., Clara, F., Clark, J. A., Clearwater, P., Clesse, S., Cleva, F., Coccia, E., Codazzo, E., Cohadon, P. -F., Cohen, D. E., Colleoni, M., Collette, C. G., Colombo, A., Colpi, M., Compton, C. M., Constancio Jr., M., Conti, L., Cooper, S. J., Corban, P., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Corley, K. R., Cornish, N. J., Corre, D., Corsi, A., Cortese, S., Costa, C. A., Cotesta, R., Cottingham, R., Coughlin, M. W., Coulon, J. -P., Countryman, S. T., Cousins, B., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Creighton, J. D. E., Creighton, T. D., Criswell, A. W., Croquette, M., Crowder, S. G., Cudell, J. R., Cullen, T. J., Cumming, A., Cummings, R., Cunningham, L., Cuoco, E., Curyło, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Dálya, G., Dana, A., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darsow-Fromm, C., Dasgupta, A., Datrier, L. E. H., Datta, Sayak, Datta, Sayantani, Dattilo, V., Dave, I., Davier, M., Davis, D., Davis, M. C., Daw, E. J., Dean, R., DeBra, D., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Favero, V., De Lillo, F., De Lillo, N., Dell'Aquila, D., Del Pozzo, W., DeMarchi, L. M., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhurandhar, S., Díaz, M. C., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giorgio, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Di Michele, A., Ding, B., Di Pace, S., Di Palma, I., Di Renzo, F., Divakarla, A. K., Dmitriev, A., Doctor, Z., Donahue, L., D'Onofrio, L., Donovan, F., Dooley, K. L., Doravari, S., Drago, M., Driggers, J. C., Drori, Y., Ducoin, J. -G., Dupej, P., Dupletsa, U., Durante, O., D'Urso, D., Duverne, P. -A., Dwyer, S. E., Eassa, C., Easter, P. J., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eguchi, S., Eichholz, J., Eikenberry, S. S., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Engelby, E., Enomoto, Y., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etienne, Z., Etzel, T., Evans, M., Evans, T. M., Evstafyeva, T., Ewing, B. E., Fabrizi, F., Faedi, F., Fafone, V., Fair, H., Fairhurst, S., Fan, P. C., Farah, A. M., Farinon, S., Farr, B., Farr, W. M., Fauchon-Jones, E. J., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Fenyvesi, E., Ferguson, D. L., Fernandez-Galiana, A., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Floden, E., Fong, H. K., Font, J. A., Fornal, B., Forsyth, P. W. F., Franke, A., Frasca, S., Frasconi, F., Freed, J. P., Frei, Z., Freise, A., Freitas, O., Frey, R., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fujii, Y., Fujikawa, Y., Fujimoto, Y., Fulda, P., Fyffe, M., Gabbard, H. A., Gabella, W. E., Gadre, B. U., Gair, J. R., Gais, J., Galaudage, S., Gamba, R., Ganapathy, D., Ganguly, A., Gao, D., Gaonkar, S. G., Garaventa, B., Núñez, C. García, García-Quirós, C., Garufi, F., Gateley, B., Gayathri, V., Ge, G. -G., Gemme, G., Gennai, A., George, J., Gerberding, O., Gergely, L., Gewecke, P., Ghonge, S., Ghosh, Abhirup, Ghosh, Archisman, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Tathagata, Giacomazzo, B., Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gier, C., Giesler, M., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Gleckl, A. E., Godwin, P., Goetz, E., Goetz, R., Gohlke, N., Golomb, J., Goncharov, B., González, G., Gosselin, M., Gouaty, R., Gould, D. W., Goyal, S., Grace, B., Grado, A., Graham, V., Granata, M., Granata, V., Grant, A., Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A. C., Green, R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimes, E., Grimm, S. J., Grote, H., Grunewald, S., Gruning, P., Gruson, A. S., Guerra, D., Guidi, G. M., Guimaraes, A. R., Guixé, G., Gulati, H. K., Gunny, A. M., Guo, H. -K., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, I. M., Gupta, P., Gupta, S. K., Gustafson, R., Guzman, F., Ha, S., Hadiputrawan, I. P. W., Haegel, L., Haino, S., Halim, O., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O., Hansen, H., Hansen, T. J., Hanson, J., Harder, T., Haris, K., Harms, J., Harry, G. M., Harry, I. W., Hartwig, D., Hasegawa, K., Haskell, B., Haster, C. -J., Hathaway, J. S., Hattori, K., Haughian, K., Hayakawa, H., Hayama, K., Hayes, F. J., Healy, J., Heidmann, A., Heidt, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Hendry, M., Heng, I. S., Hennes, E., Hennig, J., Hennig, M. H., Henshaw, C., Hernandez, A. G., Vivanco, F. Hernandez, Heurs, M., Hewitt, A. L., Higginbotham, S., Hild, S., Hill, P., Himemoto, Y., Hines, A. S., Hirata, N., Hirose, C., Ho, T-C., Hochheim, S., Hofman, D., Hohmann, J. N., Holcomb, D. G., Holland, N. A., Hollows, I. J., Holmes, Z. J., Holt, K., Holz, D. E., Hong, Q., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hoyland, D., Hreibi, A., Hsieh, B-H., Hsieh, H-F., Hsiung, C., Hsu, Y., Huang, H-Y., Huang, P., Huang, Y-C., Huang, Y. -J., Huang, Yiting, Huang, Yiwen, Hübner, M. T., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huttner, S. H., Huxford, R., Huynh-Dinh, T., Ide, S., Idzkowski, B., Iess, A., Inayoshi, K., Inoue, Y., Iosif, P., Isi, M., Isleif, K., Ito, K., Itoh, Y., Iyer, B. R., JaberianHamedan, V., Jacqmin, T., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., Jan, A. Z., Jani, K., Janquart, J., Janssens, K., Janthalur, N. N., Jaranowski, P., Jariwala, D., Jaume, R., Jenkins, A. C., Jenner, K., Jeon, C., Jia, W., Jiang, J., Jin, H. -B., Johns, G. R., Johnston, R., Jones, A. W., Jones, D. I., Jones, P., Jones, R., Joshi, P., Ju, L., Jue, A., Jung, P., Jung, K., Junker, J., Juste, V., Kaihotsu, K., Kajita, T., Kakizaki, M., Kalaghatgi, C. V., Kalogera, V., Kamai, B., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kao, Y., Kapadia, S. J., Kapasi, D. P., Karathanasis, C., Karki, S., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsanevas, S., Katsavounidis, E., Katzman, W., Kaur, T., Kawabe, K., Kawaguchi, K., Kéfélian, F., Keitel, D., Key, J. S., Khadka, S., Khalili, F. Y., Khan, S., Khanam, T., Khazanov, E. A., Khetan, N., Khursheed, M., Kijbunchoo, N., Kim, A., Kim, C., Kim, J. C., Kim, J., Kim, K., Kim, W. S., Kim, Y. -M., Kimball, C., Kimura, N., Kinley-Hanlon, M., Kirchhoff, R., Kissel, J. S., Klimenko, S., Klinger, T., Knee, A. M., Knowles, T. D., Knust, N., Knyazev, E., Kobayashi, Y., Koch, P., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kondrashov, V., Kong, A. K. H., Kontos, A., Koper, N., Korobko, M., Kovalam, M., Koyama, N., Kozak, D. B., Kozakai, C., Kringel, V., Krishnendu, N. V., Królak, A., Kuehn, G., Kuei, F., Kuijer, P., Kulkarni, S., Kumar, A., Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuromiya, Y., Kuroyanagi, S., Kwak, K., Lacaille, G., Lagabbe, P., Laghi, D., Lalande, E., Lalleman, M., Lam, T. L., Lamberts, A., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., LeBohec, S., Lecoeuche, Y. K., Lee, E., Lee, H. M., Lee, H. W., Lee, K., Lee, R., Legred, I. N., Lehmann, J., Lemaître, A., Lenti, M., Leonardi, M., Leonova, E., Leroy, N., Letendre, N., Levesque, C., Levin, Y., Leviton, J. N., Leyde, K., Li, A. K. Y., Li, B., Li, J., Li, K. L., Li, P., Li, T. G. F., Li, X., Lin, C-Y., Lin, E. T., Lin, F-K., Lin, F-L., Lin, H. L., Lin, L. C. -C., Linde, F., Linker, S. D., Linley, J. N., Littenberg, T. B., Liu, G. C., Liu, J., Liu, K., Liu, X., Llamas, F., Lo, R. K. L., Lo, T., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lott, T. P., Lough, J. D., Lousto, C. O., Lovelace, G., Lucaccioni, J. F., Lück, H., Lumaca, D., Lundgren, A. P., Luo, L. -W., Lynam, J. E., Ma'arif, M., Macas, R., Machtinger, J. B., MacInnis, M., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Hernandez, I. Magaña, Magazzù, C., Magee, R. M., Maggiore, R., Magnozzi, M., Mahesh, S., Majorana, E., Maksimovic, I., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mansell, G. L., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Mark, Z., Márka, S., Márka, Z., Markakis, C., Markosyan, A. S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, M., Martinez, V. A., Martinez, V., Martinovic, K., Martynov, D. V., Marx, E. J., Masalehdan, H., Mason, K., Massera, E., Masserot, A., Masso-Reid, M., Mastrogiovanni, S., Matas, A., Mateu-Lucena, M., Matichard, F., Matiushechkina, M., Mavalvala, N., McCann, J. J., McCarthy, R., McClelland, D. E., McClincy, P. K., McCormick, S., McCuller, L., McGhee, G. I., McGuire, S. C., McIsaac, C., McIver, J., McRae, T., McWilliams, S. T., Meacher, D., Mehmet, M., Mehta, A. K., Meijer, Q., Melatos, A., Melchor, D. A., Mendell, G., Menendez-Vazquez, A., Menoni, C. S., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Merritt, J. D., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Meyers, P. M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Mihaylov, D. P., Milano, L., Miller, A. L., Miller, A., Miller, B., Millhouse, M., Mills, J. C., Milotti, E., Minenkov, Y., Mio, N., Mir, Ll. M., Miravet-Tenés, M., Mishkin, A., Mishra, C., Mishra, T., Mistry, T., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Miyo, K., Miyoki, S., Mo, Geoffrey, Modafferi, L. M., Moguel, E., Mogushi, K., Mohapatra, S. R. P., Mohite, S. R., Molina, I., Molina-Ruiz, M., Mondin, M., Montani, M., Moore, C. J., Moragues, J., Moraru, D., Morawski, F., More, A., Moreno, C., Moreno, G., Mori, Y., Morisaki, S., Morisue, N., Moriwaki, Y., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Muñiz, E. A., Murray, P. G., Musenich, R., Muusse, S., Nadji, S. L., Nagano, K., Nagar, A., Nakamura, K., Nakano, H., Nakano, M., Nakayama, Y., Napolano, V., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, B., Nayak, R. K., Neil, B. F., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neubauer, P., Neunzert, A., Ng, K. Y., Ng, S. W. S., Nguyen, C., Nguyen, P., Nguyen, T., Quynh, L. Nguyen, Ni, J., Ni, W. -T., Nichols, S. A., Nishimoto, T., Nishizawa, A., Nissanke, S., Nitoglia, E., Nocera, F., Norman, M., North, C., Nozaki, S., Nurbek, G., Nuttall, L. K., Obayashi, Y., Oberling, J., O'Brien, B. D., O'Dell, J., Oelker, E., Ogaki, W., Oganesyan, G., Oh, J. J., Oh, K., Oh, S. H., Ohashi, M., Ohashi, T., Ohkawa, M., Ohme, F., Ohta, H., Okada, M. A., Okutani, Y., Olivetto, C., Oohara, K., Oram, R., O'Reilly, B., Ormiston, R. G., Ormsby, N. D., O'Shaughnessy, R., O'Shea, E., Oshino, S., Ossokine, S., Osthelder, C., Otabe, S., Ottaway, D. J., Overmier, H., Pace, A. E., Pagano, G., Pagano, R., Page, M. A., Pagliaroli, G., Pai, A., Pai, S. A., Pal, S., Palamos, J. R., Palashov, O., Palomba, C., Pan, H., Pan, K. -C., Panda, P. K., Pang, P. T. H., Pankow, C., Pannarale, F., Pant, B. C., Panther, F. H., Paoletti, F., Paoli, A., Paolone, A., Pappas, G., Parisi, A., Park, H., Park, J., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patel, M., Pathak, M., Patricelli, B., Patron, A. S., Paul, S., Payne, E., Pedraza, M., Pedurand, R., Pegoraro, M., Pele, A., Arellano, F. E. Peña, Penano, S., Penn, S., Perego, A., Pereira, A., Pereira, T., Perez, C. J., Périgois, C., Perkins, C. C., Perreca, A., Perriès, S., Pesios, D., Petermann, J., Petterson, D., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierro, V., Pillant, G., Pillas, M., Pilo, F., Pinard, L., Pineda-Bosque, C., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Piotrzkowski, K., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Pluchar, C., Poggiani, R., Polini, E., Pong, D. Y. T., Ponrathnam, S., Porter, E. K., Poulton, R., Poverman, A., Powell, J., Pracchia, M., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Pratten, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Prudenzi, L., Puecher, A., Punturo, M., Puosi, F., Puppo, P., Pürrer, M., Qi, H., Quartey, N., Quetschke, V., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raaijmakers, G., Radkins, H., Radulesco, N., Raffai, P., Rail, S. X., Raja, S., Rajan, C., Ramirez, K. E., Ramirez, T. D., Ramos-Buades, A., Rana, J., Rapagnani, P., Ray, A., Raymond, V., Raza, N., Razzano, M., Read, J., Rees, L. A., Regimbau, T., Rei, L., Reid, S., Reid, S. W., Reitze, D. H., Relton, P., Renzini, A., Rettegno, P., Revenu, B., Reza, A., Rezac, M., Ricci, F., Richards, D., Richardson, J. W., Richardson, L., Riemenschneider, G., Riles, K., Rinaldi, S., Rink, K., Robertson, N. A., Robie, R., Robinet, F., Rocchi, A., Rodriguez, S., Rolland, L., Rollins, J. G., Romanelli, M., Romano, R., Romel, C. L., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Rosa, L., Rose, C. A., Rosińska, D., Ross, M. P., Rowan, S., Rowlinson, S. J., Roy, Santosh, Roy, Soumen, Rozza, D., Ruggi, P., Ruiz-Rocha, K., Ryan, K., Sachdev, S., Sadecki, T., Sadiq, J., Saha, S., Saito, Y., Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Samajdar, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sanuy, A., Saravanan, T. R., Sarin, N., Sassolas, B., Satari, H., Sathyaprakash, B. S., Sauter, O., Savage, R. L., Savant, V., Sawada, T., Sawant, H. L., Sayah, S., Schaetzl, D., Scheel, M., Scheuer, J., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schönbeck, A., Schulte, B. W., Schutz, B. F., Schwartz, E., Scott, J., Scott, S. M., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Sequino, V., Sergeev, A., Setyawati, Y., Shaffer, T., Shahriar, M. S., Shaikh, M. A., Shams, B., Shao, L., Sharma, A., Sharma, P., Shawhan, P., Shcheblanov, N. S., Sheela, A., Shikano, Y., Shikauchi, M., Shimizu, H., Shimode, K., Shinkai, H., Shishido, T., Shoda, A., Shoemaker, D. H., Shoemaker, D. M., ShyamSundar, S., Sieniawska, M., Sigg, D., Silenzi, L., Singer, L. P., Singh, D., Singh, M. K., Singh, N., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Soldateschi, J., Somala, S. N., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Soulard, R., Souradeep, T., Sowell, E., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Srivastava, A. K., Srivastava, V., Staats, K., Stachie, C., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stops, D. J., Stover, M., Strain, K. A., Strang, L. C., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sudhir, V., Sugimoto, R., Suh, H. G., Sullivan, A. G., Summerscales, T. Z., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P. J., Suzuki, Takamasa, Suzuki, Takanori, Suzuki, Toshikazu, Swinkels, B. L., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takano, S., Takeda, H., Takeda, M., Talbot, C. J., Talbot, C., Tanaka, K., Tanaka, Taiki, Tanaka, Takahiro, Tanasijczuk, A. J., Tanioka, S., Tanner, D. B., Tao, D., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Taranto, C., Taruya, A., Tasson, J. D., Tenorio, R., Terhune, J. E. S., Terkowski, L., Thirugnanasambandam, M. P., Thomas, M., Thomas, P., Thompson, E. E., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tiwari, Shubhanshu, Tiwari, Srishti, Tiwari, V., Toivonen, A. M., Tolley, A. E., Tomaru, T., Tomura, T., Tonelli, M., Tornasi, Z., Torres-Forné, A., Torrie, C. I., Melo, I. Tosta e, Töyrä, D., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsai, D., Tsang, K. W., Tsang, T., Tsao, J-S., Tse, M., Tso, R., Tsuchida, S., Tsukada, L., Tsuna, D., Tsutsui, T., Turbang, K., Turconi, M., Tuyenbayev, D., Ubhi, A. S., Uchikata, N., Uchiyama, T., Udall, R. P., Ueda, A., Uehara, T., Ueno, K., Ueshima, G., Unnikrishnan, C. S., Urban, A. L., Ushiba, T., Utina, A., Vajente, G., Vajpeyi, A., Valdes, G., Valentini, M., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van Haevermaet, H., van Heijningen, J. V., van Putten, M. H. P. M., van Remortel, N., Vardaro, M., Vargas, A. F., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venneberg, J., Venugopalan, G., Verkindt, D., Verma, P., Verma, Y., Vermeulen, S. M., Veske, D., Vetrano, F., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Villa-Ortega, V., Vinet, J. -Y., Virtuoso, A., Vitale, S., Vocca, H., von Reis, E. R. G., von Wrangel, J. S. A., Vorvick, C., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Walet, R. C., Walker, M., Wallace, G. S., Wallace, L., Wang, J., Wang, J. Z., Wang, W. H., Ward, R. L., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watchi, J., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Weller, C. M., Weller, R. A., Wellmann, F., Wen, L., Wessels, P., Wette, K., Whelan, J. T., White, D. D., Whiting, B. F., Whittle, C., Wilken, D., Williams, D., Williams, M. J., Williamson, A. R., Willis, J. L., Willke, B., Wilson, D. J., Wipf, C. C., Wlodarczyk, T., Woan, G., Woehler, J., Wofford, J. K., Wong, D., Wong, I. C. F., Wright, M., Wu, C., Wu, D. S., Wu, H., Wysocki, D. M., Xiao, L., Yamada, T., Yamamoto, H., Yamamoto, K., Yamamoto, T., Yamashita, K., Yamazaki, R., Yang, F. W., Yang, K. Z., Yang, L., Yang, Y. -C., Yang, Y., Yang, Yang, Yap, M. J., Yeeles, D. W., Yeh, S. -W., Yelikar, A. B., Ying, M., Yokoyama, J., Yokozawa, T., Yoo, J., Yoshioka, T., Yu, Hang, Yu, Haocun, Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeidler, S., Zelenova, T., Zendri, J. -P., Zevin, M., Zhan, M., Zhang, H., Zhang, J., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, G., Zhao, Y., Zhao, Yue, Zhou, R., Zhou, Z., Zhu, X. J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bursts come from two magnetars, SGR 1935$+$2154 and Swift J1818.0$-$1607. We also include three other electromagnetic burst events detected by Fermi GBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper bounds on the root-sum-square of the integrated gravitational-wave strain that reach $2.2 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at 100 Hz for the short-duration search and $8.7 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at $450$ Hz for the long-duration search, given a detection efficiency of 50%. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to $1.8 \times 10^{-22}$ $/\sqrt{\text{Hz}}$. Using the estimated distance to each magnetar, we derive upper bounds on the emitted gravitational-wave energy of $3.2 \times 10^{43}$ erg ($7.3 \times 10^{43}$ erg) for SGR 1935$+$2154 and $8.2 \times 10^{42}$ erg ($2.8 \times 10^{43}$ erg) for Swift J1818.0$-$1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935$+$2154 with available fluence information. The lowest of these ratios is $3 \times 10^3$., Comment: 30 pages with appendices, 5 figures, 10 tables
- Published
- 2022
116. Dissipative Kerr soliton photonic terahertz oscillator referenced to a molecule
- Author
-
Greenberg, James, Heffernan, Brendan M., Tetsumoto, Tomohiro, and Rolland, Antoine
- Subjects
Physics - Optics - Abstract
Controlling the coherence between light and matter has enabled the radiation of electromagnetic waves with spectral purity and stability that defines the Syst\`eme International (SI) second. While transitions between hyperfine levels in atoms are accessible in the microwave and optical domains, faithfully transferring such stability to other frequency ranges of interest is not trivial. Such stability is specifically sought after for the terahertz domain to improve the resolution in very long baseline interferometry and molecular spectroscopy, and advance the technological development of high-speed, high data rate wireless communications. However, there is an evident lack of native frequency references in this spectral range, essential for the consistency of measurements and traceability. To mitigate the frequency drift encompassed in such waves, we experimentally demonstrate that using rotational spectroscopy of nitrous oxide N2O can lead to linewidth reduction up to a thousandfold. A pair of diode lasers, optically injected with a low-noise, chip-based dissipative Kerr soliton, were incident upon a uni-travelling-carrier photodiode. We frequency-locked the emitted terahertz wave to the center of a rotational transition of N2O through phase modulation spectroscopy. A terahertz wave with a 6 Hz linewidth was achieved (fractional frequency stability of $2 \times 10^{-11}$ at 1 second averaging time) while circumventing the need of frequency multiplication or division of frequency standards., Comment: arXiv admin note: text overlap with arXiv:2205.06380
- Published
- 2022
117. Virgo Detector Characterization and Data Quality: results from the O3 run
- Author
-
Acernese, F., Agathos, M., Ain, A., Albanesi, S., Allocca, A., Amato, A., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Ansoldi, S., Antier, S., Apostolatos, T., Appavuravther, E. Z., Arène, M., Arnaud, N., Assiduo, M., Melo, S. Assis de Souza, Astone, P., Aubin, F., Babak, S., Badaracco, F., Bader, M. K. M., Bagnasco, S., Baird, J., Baka, T., Ballardin, G., Baltus, G., Banerjee, B., Barbieri, C., Barneo, P., Barone, F., Barsuglia, M., Barta, D., Basti, A., Bawaj, M., Bazzan, M., Beirnaert, F., Bejger, M., Belahcene, I., Benedetto, V., Berbel, M., Bernuzzi, S., Bersanetti, D., Bertolini, A., Bhardwaj, U., Bianchi, A., Bini, S., Bischi, M., Bitossi, M., Bizouard, M. -A., Bobba, F., Boër, M., Bogaert, G., Boldrini, M., Bonavena, L. D., Bondu, F., Bonnand, R., Boom, B. A., Boschi, V., Boudart, V., Bouffanais, Y., Bozzi, A., Bradaschia, C., Branchesi, M., Breschi, M., Briant, T., Brillet, A., Brooks, J., Bruno, G., Bucci, F., Bulik, T., Bulten, H. J., Buskulic, D., Buy, C., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cagnoli, G., Calloni, E., Canepa, M., Canevarolo, S., Cannavacciuolo, M., Capocasa, E., Carapella, G., Carbognani, F., Carpinelli, M., Carullo, G., Diaz, J. Casanueva, Casentini, C., Caudill, S., Cavalier, F., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chanial, P., Chassande-Mottin, E., Chaty, S., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Choudhary, S., Christensen, N., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Cipriano, F., Clesse, S., Cleva, F., Coccia, E., Codazzo, E., Cohadon, P. -F., Cohen, D. E., Colombo, A., Colpi, M., Conti, L., Cordero-Carrión, I., Corezzi, S., Corre, D., Cortese, S., Coulon, J. -P., Croquette, M., Cudell, J. R., Cuoco, E., Curyło, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Dattilo, V., Davier, M., Davis, D., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Matteis, F., Depasse, A., De Pietri, R., De Rosa, R., De Rossi, C., De Simone, R., Di Fiore, L., Di Giorgio, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Di Michele, A., Di Pace, S., Di Palma, I., Di Renzo, F., D'Onofrio, L., Drago, M., Ducoin, J. -G., Dupletsa, U., Durante, O., D'Urso, D., Duverne, P. -A., Eisenmann, M., Errico, L., Estevez, D., Fabrizi, F., Faedi, F., Fafone, V., Farinon, S., Favaro, G., Fays, M., Fenyvesi, E., Ferrante, I., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fittipaldi, R., Fiumara, V., Flaminio, R., Font, J. A., Frasca, S., Frasconi, F., Freise, A., Freitas, O., Fronzé, G. G., Gadre, B. U., Gamba, R., Garaventa, B., Garufi, F., Gemme, G., Gennai, A., Ghosh, Archisman, Giacomazzo, B., Giacoppo, L., Giri, P., Gissi, F., Gkaitatzis, S., Goncharov, B., Gosselin, M., Gouaty, R., Grado, A., Granata, M., Granata, V., Greco, G., Grignani, G., Grimaldi, A., Grimm, S. J., Gruning, P., Guerra, D., Guidi, G. M., Guixé, G., Guo, Y., Gupta, P., Haegel, L., Halim, O., Hannuksela, O., Harder, T., Haris, K., Harms, J., Haskell, B., Heidmann, A., Heitmann, H., Hello, P., Hemming, G., Hennes, E., Hild, S., Hofman, D., Hui, V., Idzkowski, B., Iess, A., Iosif, P., Jacqmin, T., Jacquet, P. -E., Jadhav, S. P., Janquart, J., Janssens, K., Jaranowski, P., Juste, V., Kalaghatgi, C., Karathanasis, C., Katsanevas, S., Kéfélian, F., Khetan, N., Koekoek, G., Koley, S., Kolstein, M., Królak, A., Kuijer, P., Lagabbe, P., Laghi, D., Lalleman, M., Lamberts, A., La Rosa, I., Lartaux-Vollard, A., Lazzaro, C., Leaci, P., Lemaître, A., Lenti, M., Leonova, E., Leroy, N., Letendre, N., Leyde, K., Linde, F., London, L., Longo, A., Portilla, M. Lopez, Lorenzini, M., Loriette, V., Losurdo, G., Lumaca, D., Macquet, A., Magazzù, C., Magnozzi, M., Majorana, E., Maksimovic, I., Man, N., Mangano, V., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Marquina, A., Marsat, S., Martelli, F., Martinez, M., Martinez, V., Masserot, A., Mastrogiovanni, S., Meijer, Q., Menendez-Vazquez, A., Mereni, L., Merzougui, M., Miani, A., Michel, C., Milano, L., Miller, A., Miller, B., Milotti, E., Minenkov, Y., Mir, Ll. M., Miravet-Tenés, M., Montani, M., Morawski, F., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, Suvodip, Musenich, R., Nagar, A., Napolano, V., Nardecchia, I., Narola, H., Naticchioni, L., Neilson, J., Nguyen, C., Nissanke, S., Nitoglia, E., Nocera, F., Oganesyan, G., Olivetto, C., Pagano, G., Pagliaroli, G., Palomba, C., Pang, P. T. H., Pannarale, F., Paoletti, F., Paoli, A., Paolone, A., Pappas, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patricelli, B., Pedurand, R., Pegoraro, M., Perego, A., Pereira, A., Périgois, C., Perreca, A., Perriès, S., Pesios, D., Phukon, K. S., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierro, V., Pillant, G., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, K., Placidi, A., Placidi, E., Plastino, W., Poggiani, R., Polini, E., Porter, E. K., Poulton, R., Pracchia, M., Pradier, T., Principe, M., Prodi, G. A., Prosposito, P., Puecher, A., Punturo, M., Puosi, F., Puppo, P., Raaijmakers, G., Radulesco, N., Rapagnani, P., Razzano, M., Regimbau, T., Rei, L., Rettegno, P., Revenu, B., Reza, A., Ricci, F., Riemenschneider, G., Rinaldi, S., Robinet, F., Rocchi, A., Rolland, L., Romanelli, M., Romano, R., Romero, A., Ronchini, S., Rosa, L., Rosińska, D., Roy, S., Rozza, D., Ruggi, P., Sadiq, Jam., Salafia, O. S., Salconi, L., Salemi, F., Samajdar, A., Sanchis-Gual, N., Sanuy, A., Sassolas, B., Sayah, S., Schmidt, S., Seglar-Arroyo, M., Sentenac, D., Sequino, V., Setyawati, Y., Sharma, A., Shcheblanov, N. S., Sieniawska, M., Silenzi, L., Singh, N., Singha, A., Sipala, V., Soldateschi, J., Soni, K., Sordini, V., Sorrentino, F., Sorrentino, N., Soulard, R., Spagnuolo, V., Spera, M., Spinicelli, P., Stachie, C., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stratta, G., Suchenek, M., Sur, A., Swinkels, B. L., Szewczyk, P., Tacca, M., Tanasijczuk, A. J., Martín, E. N. Tapia San, Taranto, C., Tolley, A. E., Tonelli, M., Torres-Forné, A., Melo, I. Tosta e, Trapananti, A., Travasso, F., Trevor, Max., Tringali, M. C., Troiano, L., Trovato, A., Trozzo, L., Tsang, K. W., Turbang, K., Turconi, M., Utina, A., Valentini, M., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, van Haevermaet, H., van Heijningen, J. V., van Remortel, N., Vardaro, M., Vasúth, M., Vedovato, G., Verkindt, D., Verma, P., Vetrano, F., Viceré, A., Villa-Ortega, V., Vinet, J. -Y., Virtuoso, A., Vocca, H., Walet, R. C., Was, M., Williamson, A. R., Willis, J. L., Zadrożny, A., Zelenova, T., and Zendri, J. -P.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave (GW) signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the full Observation Run 3 (O3): an 11-months data taking period, between April 2019 and March 2020, that led to the addition of about 80 events to the catalog of transient GW sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the manifold exploitation of the detected waveforms require an accurate characterization of the quality of the data, such as continuous study and monitoring of the detector noise sources. These activities, collectively named {\em detector characterization and data quality} or {\em DetChar}, span the whole workflow of the Virgo data, from the instrument front-end hardware to the final analyses. They are described in details in the following article, with a focus on the results achieved by the Virgo DetChar group during the O3 run. Concurrently, a companion article describes the tools that have been used by the Virgo DetChar group to perform this work., Comment: 57 pages, 18 figures. New version, resubmitted to Class. and Quantum Grav. This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has been split into two companion articles: one about the tools and methods, the other about the analyses of the O3 Virgo data
- Published
- 2022
- Full Text
- View/download PDF
118. Virgo Detector Characterization and Data Quality: tools
- Author
-
Acernese, F., Agathos, M., Ain, A., Albanesi, S., Allocca, A., Amato, A., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Ansoldi, S., Antier, S., Apostolatos, T., Appavuravther, E. Z., Arène, M., Arnaud, N., Assiduo, M., Melo, S. Assis de Souza, Astone, P., Aubin, F., Babak, S., Badaracco, F., Bader, M. K. M., Bagnasco, S., Baird, J., Baka, T., Ballardin, G., Baltus, G., Banerjee, B., Barbieri, C., Barneo, P., Barone, F., Barsuglia, M., Barta, D., Basti, A., Bawaj, M., Bazzan, M., Beirnaert, F., Bejger, M., Belahcene, I., Benedetto, V., Berbel, M., Bernuzzi, S., Bersanetti, D., Bertolini, A., Bhardwaj, U., Bianchi, A., Bini, S., Bischi, M., Bitossi, M., Bizouard, M. -A., Bobba, F., Boër, M., Bogaert, G., Boldrini, M., Bonavena, L. D., Bondu, F., Bonnand, R., Boom, B. A., Boschi, V., Boudart, V., Bouffanais, Y., Bozzi, A., Bradaschia, C., Branchesi, M., Breschi, M., Briant, T., Brillet, A., Brooks, J., Bruno, G., Bucci, F., Bulik, T., Bulten, H. J., Buskulic, D., Buy, C., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cagnoli, G., Calloni, E., Canepa, M., Canevarolo, S., Cannavacciuolo, M., Capocasa, E., Carapella, G., Carbognani, F., Carpinelli, M., Carullo, G., Diaz, J. Casanueva, Casentini, C., Caudill, S., Cavalier, F., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chanial, P., Chassande-Mottin, E., Chaty, S., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Choudhary, S., Christensen, N., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Cipriano, F., Clesse, S., Cleva, F., Coccia, E., Codazzo, E., Cohadon, P. -F., Cohen, D. E., Colombo, A., Colpi, M., Conti, L., Cordero-Carrión, I., Corezzi, S., Corre, D., Cortese, S., Coulon, J. -P., Croquette, M., Cudell, J. R., Cuoco, E., Curyło, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Dattilo, V., Davier, M., Davis, D., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Matteis, F., Depasse, A., De Pietri, R., De Rosa, R., De Rossi, C., De Simone, R., Di Fiore, L., Di Giorgio, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Di Michele, A., Di Pace, S., Di Palma, I., Di Renzo, F., D'Onofrio, L., Drago, M., Ducoin, J. -G., Dupletsa, U., Durante, O., D'Urso, D., Duverne, P. -A., Eisenmann, M., Errico, L., Estevez, D., Fabrizi, F., Faedi, F., Fafone, V., Farinon, S., Favaro, G., Fays, M., Fenyvesi, E., Ferrante, I., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fittipaldi, R., Fiumara, V., Flaminio, R., Font, J. A., Frasca, S., Frasconi, F., Freise, A., Freitas, O., Fronzé, G. G., Gadre, B. U., Gamba, R., Garaventa, B., Garufi, F., Gemme, G., Gennai, A., Ghosh, Archisman, Giacomazzo, B., Giacoppo, L., Giri, P., Gissi, F., Gkaitatzis, S., Goncharov, B., Gosselin, M., Gouaty, R., Grado, A., Granata, M., Granata, V., Greco, G., Grignani, G., Grimaldi, A., Grimm, S. J., Gruning, P., Guerra, D., Guidi, G. M., Guixé, G., Guo, Y., Gupta, P., Haegel, L., Halim, O., Hannuksela, O., Harder, T., Haris, K., Harms, J., Haskell, B., Heidmann, A., Heitmann, H., Hello, P., Hemming, G., Hennes, E., Hild, S., Hofman, D., Hui, V., Idzkowski, B., Iess, A., Iosif, P., Jacqmin, T., Jacquet, P. -E., Jadhav, S. P., Janquart, J., Janssens, K., Jaranowski, P., Juste, V., Kalaghatgi, C., Karathanasis, C., Katsanevas, S., Kéfélian, F., Khetan, N., Koekoek, G., Koley, S., Kolstein, M., Królak, A., Kuijer, P., Lagabbe, P., Laghi, D., Lalleman, M., Lamberts, A., La Rosa, I., Lartaux-Vollard, A., Lazzaro, C., Leaci, P., Lemaître, A., Lenti, M., Leonova, E., Leroy, N., Letendre, N., Leyde, K., Linde, F., London, L., Longo, A., Portilla, M. Lopez, Lorenzini, M., Loriette, V., Losurdo, G., Lumaca, D., Macquet, A., Magazzù, C., Magnozzi, M., Majorana, E., Maksimovic, I., Man, N., Mangano, V., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Marquina, A., Marsat, S., Martelli, F., Martinez, M., Martinez, V., Masserot, A., Mastrogiovanni, S., Meijer, Q., Menendez-Vazquez, A., Mereni, L., Merzougui, M., Miani, A., Michel, C., Milano, L., Miller, A., Miller, B., Milotti, E., Minenkov, Y., Mir, Ll. M., Miravet-Tenés, M., Montani, M., Morawski, F., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, Suvodip, Musenich, R., Nagar, A., Napolano, V., Nardecchia, I., Narola, H., Naticchioni, L., Neilson, J., Nguyen, C., Nissanke, S., Nitoglia, E., Nocera, F., Oganesyan, G., Olivetto, C., Pagano, G., Pagliaroli, G., Palomba, C., Pang, P. T. H., Pannarale, F., Paoletti, F., Paoli, A., Paolone, A., Pappas, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patricelli, B., Pedurand, R., Pegoraro, M., Perego, A., Pereira, A., Périgois, C., Perreca, A., Perriès, S., Pesios, D., Phukon, K. S., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierro, V., Pillant, G., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, K., Placidi, A., Placidi, E., Plastino, W., Poggiani, R., Polini, E., Porter, E. K., Poulton, R., Pracchia, M., Pradier, T., Principe, M., Prodi, G. A., Prosposito, P., Puecher, A., Punturo, M., Puosi, F., Puppo, P., Raaijmakers, G., Radulesco, N., Rapagnani, P., Razzano, M., Regimbau, T., Rei, L., Rettegno, P., Revenu, B., Reza, A., Ricci, F., Riemenschneider, G., Rinaldi, S., Robinet, F., Rocchi, A., Rolland, L., Romanelli, M., Romano, R., Romero, A., Ronchini, S., Rosa, L., Rosińska, D., Roy, S., Rozza, D., Ruggi, P., Sadiq, Jam., Salafia, O. S., Salconi, L., Salemi, F., Samajdar, A., Sanchis-Gual, N., Sanuy, A., Sassolas, B., Sayah, S., Schmidt, S., Seglar-Arroyo, M., Sentenac, D., Sequino, V., Setyawati, Y., Sharma, A., Shcheblanov, N. S., Sieniawska, M., Silenzi, L., Singh, N., Singha, A., Sipala, V., Soldateschi, J., Soni, K., Sordini, V., Sorrentino, F., Sorrentino, N., Soulard, R., Spagnuolo, V., Spera, M., Spinicelli, P., Stachie, C., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stratta, G., Suchenek, M., Sur, A., Swinkels, B. L., Szewczyk, P., Tacca, M., Tanasijczuk, A. J., Martín, E. N. Tapia San, Taranto, C., Tolley, A. E., Tonelli, M., Torres-Forné, A., Melo, I. Tosta e, Trapananti, A., Travasso, F., Trevor, Max., Tringali, M. C., Troiano, L., Trovato, A., Trozzo, L., Tsang, K. W., Turbang, K., Turconi, M., Utina, A., Valentini, M., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, van Haevermaet, H., van Heijningen, J. V., van Remortel, N., Vardaro, M., Vasúth, M., Vedovato, G., Verkindt, D., Verma, P., Vetrano, F., Viceré, A., Villa-Ortega, V., Vinet, J. -Y., Virtuoso, A., Vocca, H., Walet, R. C., Was, M., Williamson, A. R., Willis, J. L., Zadrożny, A., Zelenova, T., and Zendri, J. -P.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Detector characterization and data quality studies -- collectively referred to as {\em DetChar} activities in this article -- are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the instruments (upgrade, tuning and optimization, data taking), are required at all steps of the dataflow (from data acquisition to the final list of GW events) and operate at various latencies (from near real-time to vet the public alerts to offline analyses). This work requires a wide set of tools which have been developed over the years to fulfill the requirements of the various DetChar studies: data access and bookkeeping; global monitoring of the instruments and of the different steps of the data processing; studies of the global properties of the noise at the detector outputs; identification and follow-up of noise peculiar features (whether they be transient or continuously present in the data); quick processing of the public alerts. The present article reviews all the tools used by the Virgo DetChar group during the third LIGO-Virgo Observation Run (O3, from April 2019 to March 2020), mainly to analyse the Virgo data acquired at EGO. Concurrently, a companion article focuses on the results achieved by the DetChar group during the O3 run using these tools., Comment: 44 pages, 16 figures. New version, resubmitted to Class. and Quantum Grav. This is the "Tools" part of preprint arXiv:2205.01555 [gr-qc] which has been split into two companion articles: one about the tools and methods, the other about the analyses of the O3 Virgo data
- Published
- 2022
- Full Text
- View/download PDF
119. Regularized Contrastive Learning of Semantic Search
- Author
-
Tan, Mingxi, Rolland, Alexis, and Tian, Andong
- Subjects
Computer Science - Machine Learning - Abstract
Semantic search is an important task which objective is to find the relevant index from a database for query. It requires a retrieval model that can properly learn the semantics of sentences. Transformer-based models are widely used as retrieval models due to their excellent ability to learn semantic representations. in the meantime, many regularization methods suitable for them have also been proposed. In this paper, we propose a new regularization method: Regularized Contrastive Learning, which can help transformer-based models to learn a better representation of sentences. It firstly augments several different semantic representations for every sentence, then take them into the contrastive objective as regulators. These contrastive regulators can overcome overfitting issues and alleviate the anisotropic problem. We firstly evaluate our approach on 7 semantic search benchmarks with the outperforming pre-trained model SRoBERTA. The results show that our method is more effective for learning a superior sentence representation. Then we evaluate our approach on 2 challenging FAQ datasets, Cough and Faqir, which have long query and index. The results of our experiments demonstrate that our method outperforms baseline methods., Comment: 13 pages, 3 figures, paper accepted by NLPCC 2022
- Published
- 2022
120. Identifiability and generalizability from multiple experts in Inverse Reinforcement Learning
- Author
-
Rolland, Paul, Viano, Luca, Schuerhoff, Norman, Nikolov, Boris, and Cevher, Volkan
- Subjects
Computer Science - Machine Learning - Abstract
While Reinforcement Learning (RL) aims to train an agent from a reward function in a given environment, Inverse Reinforcement Learning (IRL) seeks to recover the reward function from observing an expert's behavior. It is well known that, in general, various reward functions can lead to the same optimal policy, and hence, IRL is ill-defined. However, (Cao et al., 2021) showed that, if we observe two or more experts with different discount factors or acting in different environments, the reward function can under certain conditions be identified up to a constant. This work starts by showing an equivalent identifiability statement from multiple experts in tabular MDPs based on a rank condition, which is easily verifiable and is shown to be also necessary. We then extend our result to various different scenarios, i.e., we characterize reward identifiability in the case where the reward function can be represented as a linear combination of given features, making it more interpretable, or when we have access to approximate transition matrices. Even when the reward is not identifiable, we provide conditions characterizing when data on multiple experts in a given environment allows to generalize and train an optimal agent in a new environment. Our theoretical results on reward identifiability and generalizability are validated in various numerical experiments.
- Published
- 2022
121. SPARKESX: Single-dish PARKES data sets for finding the uneXpected -- A data challenge
- Author
-
Yong, Suk Yee, Hobbs, George, Huynh, Minh T., Rolland, Vivien, Petersson, Lars, Norris, Ray P., Dai, Shi, Luo, Rui, and Zic, Andrew
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Solar and Stellar Astrophysics - Abstract
New classes of astronomical objects are often discovered serendipitously. The enormous data volumes produced by recent high-time resolution, radio-telescope surveys imply that efficient algorithms are required for a discovery. Such algorithms are usually tuned to detect specific, known sources. Existing data sets therefore likely contain unknown astronomical sources, which will remain undetected unless algorithms are developed that can detect a more diverse range of signals. We present the Single-dish PARKES data challenge for finding the uneXpected (SPARKESX), a compilation of real and simulated high-time resolution observations. SPARKESX comprises three mock surveys from the Parkes "Murriyang" radio telescope. A broad selection of simulated and injected expected signals (such as pulsars, fast radio bursts), poorly characterised signals (plausible flare star signatures) and unknown unknowns are generated for each survey. The goal of this challenge is to aid in the development of new algorithms that can detect a wide-range of source types. We show how successful a typical pipeline based on the standard pulsar search software, PRESTO, is at finding the injected signals. The dataset is publicly available at https://doi.org/10.25919/fd4f-0g20., Comment: Accepted for publication in MNRAS. 18 pages, 8 figures, 4 table
- Published
- 2022
- Full Text
- View/download PDF
122. Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abbott, R., Abe, H., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Alléné, C., Allocca, A., Altin, P. A., Amato, A., Anand, S., Ananyeva, A., Anderson, S. B., Anderson, W. G., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Ansoldi, S., Antelis, J. M., Antier, S., Apostolatos, T., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Arène, M., Aritomi, N., Arnaud, N., Arogeti, M., Aronson, S. M., Asada, H., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Aubin, F., AultONeal, K., Babak, S., Badaracco, F., Badger, C., Bae, S., Bae, Y., Bagnasco, S., Bai, Y., Baier, J. G., Baird, J., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Baltus, G., Banagiri, S., Banerjee, B., Bankar, D., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Barton, M. A., Bartos, I., Basak, S., Bassiri, R., Basti, A., Bawaj, M., Bayley, J. C., Bazzan, M., Bécsy, B., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belahcene, I., Bell, A. S., Benedetto, V., Beniwal, D., Benoit, W., Bentley, J. D., BenYaala, M., Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bhandare, R., Bhandari, A. V., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bianchi, A., Bilenko, I. A., Bilicki, M., Billingsley, G., Bini, S., Birnholtz, O., Biscans, S., Bischi, M., Biscoveanu, S., Bisht, A., Biswas, B., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blair, C. D., Blair, D. G., Blair, R. M., Bobba, F., Bode, N., Boër, M., Bogaert, G., Boldrini, M., Bolingbroke, G. N., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonnand, R., Booker, P., Bork, R., Boschi, V., Bose, N., Bose, S., Bossilkov, V., Boudart, V., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P. R., Bramley, A., Branch, A., Branchesi, M., Brau, J. E., Breschi, M., Briant, T., Briggs, J. H., Brillet, A., Brinkmann, M., Brockill, P., Brooks, A. F., Brooks, J., Brown, D. D., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callaghan, J. D., Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Caneva, G., Cannavacciuolo, M., Cannon, K. C., Cao, H., Cao, Z., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castaldi, G., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakalis, W., Subrahmanya, S. Chalathadka, Champion, E., Chan, C. -H., Chan, C., Chan, C. L., Chan, K., Chan, M., Chandra, K., Chang, I. P., Chang, W., Chanial, P., Chao, S., Chapman-Bird, C., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, C., Chen, D., Chen, H. Y., Chen, J., Chen, K., Chen, X., Chen, Y. -B., Chen, Y. -R., Chen, Y., Cheng, H., Chessa, P., Cheung, H. Y., Chia, H. Y., Chiadini, F., Chiang, C-Y., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Choudhary, R. K., Choudhary, S., Christensen, N., Chu, Q., Chu, Y-K., Chua, S. S. Y., Chung, K. W., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciobanu, A. A., Ciolfi, R., Clara, F., Clark, J. A., Clarke, T. A., Clearwater, P., Clesse, S., Cleva, F., Coccia, E., Codazzo, E., Cohadon, P. -F., Cohen, D. E., Colleoni, M., Collette, C. G., Colombo, A., Colpi, M., Compton, C. M., Conti, L., Cooper, S. J., Corban, P., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Coschizza, A. C., Cotesta, R., Cottingham, R., Coughlin, M. W., Coulon, J. -P., Countryman, S. T., Cousins, B., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Craig, K., Creighton, J. D. E., Creighton, T. D., Criswell, A. W., Croquette, M., Crowder, S. G., Cudell, J. R., Cullen, T. J., Cumming, A., Cummings, R., Cuoco, E., Curyło, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Dálya, G., Dana, A., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darsow-Fromm, C., Dasgupta, A., Datrier, L. E. H., Datta, Sayantani, Dattilo, V., Dave, I., Davier, M., Davis, D., Davis, M. C., Daw, E. J., Dax, M., DeBra, D., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Favero, V., De Lillo, F., De Lillo, N., Dell'Aquila, D., Del Pozzo, W., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhurandhar, S., Diab, R., Díaz, M. C., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giorgio, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Lieto, A., Di Michele, A., Di Pace, S., Di Palma, I., Di Renzo, F., Divakarla, A. K., Dmitriev, A., Doctor, Z., Doleva, P. P., Donahue, L., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Drori, Y., Ducoin, J. -G., Dunn, L., Dupletsa, U., Durante, O., D'Urso, D., Duverne, P. -A., Dwyer, S. E., Eassa, C., Easter, P. J., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eguchi, S., Eichholz, J., Eikenberry, S. S., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Engelby, E., Enomoto, Y., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evans, T. M., Evstafyeva, T., Ewing, B. E., Fabrizi, F., Faedi, F., Fafone, V., Fair, H., Fairhurst, S., Fan, P. C., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Fenyvesi, E., Ferguson, D. L., Fernandez-Galiana, A., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Floden, E., Fong, H. K., Font, J. A., Fornal, B., Forsyth, P. W. F., Franke, A., Frasca, S., Frasconi, F., Freed, J. P., Frei, Z., Freise, A., Freitas, O., Frey, R., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fujii, Y., Fujikawa, Y., Fujimoto, Y., Fulda, P., Fyffe, M., Gabbard, H. A., Gabella, W. E., Gadre, B. U., Gair, J. R., Gais, J., Galaudage, S., Gamba, R., Ganapathy, D., Ganguly, A., Gao, D. -F., Gao, D., Gaonkar, S. G., Garaventa, B., García-Núñez, C., García-Quirós, C., Gardner, K. A., Gargiulo, J., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Ge, G. -G., Gemme, G., Gennai, A., George, J., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Abhirup, Ghosh, Archisman, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Gleckl, A. E., Godoy, F. G., Godwin, P., Goetz, E., Goetz, R., Golomb, J., Goncharov, B., González, G., Gosselin, M., Gouaty, R., Gould, D. W., Goyal, S., Grace, B., Grado, A., Graham, V., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A. C., Green, R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimm, S. J., Grote, H., Grunewald, S., Gruson, A. S., Guerra, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H. -K., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, P., Gupta, S. K., Gurs, J., Gustafson, R., Gutierrez, N., Guzman, F., Ha, S., Hadiputrawan, I. P. W., Haegel, L., Haino, S., Halim, O., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O., Hansen, H., Hanson, J., Harada, R., Harder, T., Haris, K., Harms, J., Harry, G. M., Harry, I. W., Hartwig, D., Hasegawa, K., Haskell, B., Haster, C. -J., Hathaway, J. S., Hattori, K., Haughian, K., Hayakawa, H., Hayama, K., Hayes, F. J., Healy, J., Heidmann, A., Heidt, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Hendry, M., Heng, I. S., Hennes, E., Hennig, J. -S., Hennig, M., Henshaw, C., Hernandez, A. G., Vivanco, F. Hernandez, Heurs, M., Hewitt, A. L., Higginbotham, S., Hild, S., Hill, P., Himemoto, Y., Hines, A. S., Hirata, N., Hirose, C., Ho, T-C., Hochheim, S., Hofman, D., Hohmann, J. N., Holcomb, D. G., Holland, N. A., Hollows, I. J., Holmes, Z. J., Holt, K., Holz, D. E., Hong, Q., Hough, J., Hourihane, S., Howell, D., Howell, E. J., Hoy, C. G., Hoyland, D., Hreibi, A., Hsieh, B-H., Hsieh, H-F., Hsiung, C., Huang, H-Y., Huang, P., Huang, Y-C., Huang, Y. -J., Huang, Y., Hübner, M. T., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huttner, S. H., Huxford, R., Huynh-Dinh, T., Hyland, J., Iandolo, G. A., Ide, S., Idzkowski, B., Iess, A., Inayoshi, K., Inoue, Y., Iosif, P., Irwin, J., Gupta, Ish, Isi, M., Ito, K., Itoh, Y., Iyer, B. R., JaberianHamedan, V., Jacqmin, T., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., Jan, A. Z., Jani, K., Janquart, J., Janssens, K., Janthalur, N. N., Jaranowski, P., Jariwala, D., Jarov, S., Jaume, R., Jenkins, A. C., Jenner, K., Jeon, C., Jia, W., Jiang, J., Jin, H. -B., Johns, G. R., Johnston, R., Johny, N., Jones, A. W., Jones, D. I., Jones, P., Jones, R., Joshi, P., Ju, L., Jung, K., Jung, P., Junker, J., Juste, V., Kaihotsu, K., Kajita, T., Kakizaki, M., Kalaghatgi, C., Kalogera, V., Kamai, B., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kao, Y., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Karki, S., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsanevas, S., Katsavounidis, E., Katzman, W., Kaur, T., Kawabe, K., Kawaguchi, K., Kéfélian, F., Keitel, D., Key, J. S., Khadka, S., Khalili, F. Y., Khan, S., Khanam, T., Khazanov, E. A., Khetan, N., Khursheed, M., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, J., Kim, K., Kim, P., Kim, W. S., Kim, Y. -M., Kimball, C., Kimura, N., King, B., Kinley-Hanlon, M., Kirchhoff, R., Kissel, J. S., Klimenko, S., Klinger, T., Knee, A. M., Knust, N., Kobayashi, Y., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Kondrashov, V., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kovalam, M., Koyama, N., Kozak, D. B., Kozakai, C., Kranzhoff, L., Kringel, V., Krishnendu, N. V., Królak, A., Kuehn, G., Kuijer, P., Kulkarni, S., Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuromiya, Y., Kuroyanagi, S., Kuwahara, S., Kwak, K., Lacaille, G., Lagabbe, P., Laghi, D., Lalande, E., Lalleman, M., Lamberts, A., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., LeBohec, S., Lecoeuche, Y. K., Lee, E., Lee, H. M., Lee, H. W., Lee, K., Lee, R., Legred, I. N., Lehmann, J., Lemaître, A., Lenti, M., Leonardi, M., Leonova, E., Leroy, N., Letendre, N., Levesque, C., Levin, Y., Leviton, J. N., Leyde, K., Li, A. K. Y., Li, B., Li, K. L., Li, P., Li, T. G. F., Li, X., Lin, C-Y., Lin, E. T., Lin, F-K., Lin, F-L., Lin, H. L., Lin, L. C. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, G. C., Liu, J., Liu, X., Llamas, F., Lo, R. K. L., Lo, T., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lott, T. P., Lough, J. D., Lousto, C. O., Lovelace, G., Lowry, M. J., Lucaccioni, J. F., Lück, H., Lumaca, D., Lundgren, A. P., Lung, Y., Luo, L. -W., Lussier, A. W., Lynam, J. E., Ma'arif, M., Macas, R., MacInnis, M., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Hernandez, I. Magaña, Magazzù, C., Magee, R. M., Maggiore, R., Magnozzi, M., Mahesh, S., Majorana, E., Makarem, C. N., Maksimovic, I., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B. R., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Mark, Z., Márka, S., Márka, Z., Markakis, C., Markosyan, A. S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, M., Martinez, V. A., Martinez, V., Martinovic, K., Martynov, D. V., Marx, E. J., Masalehdan, H., Mason, K., Masserot, A., Masso-Reid, M., Mastrogiovanni, S., Matas, A., Mateu-Lucena, M., Matiushechkina, M., Mavalvala, N., McCann, J. J., McCarthy, R., McClelland, D. E., McClincy, P. K., McCormick, S., McCuller, L., McGhee, G. I., McGinn, J., McGuire, S. C., McIsaac, C., McIver, J., McLeod, A., McRae, T., McWilliams, S. T., Meacher, D., Mehmet, M., Mehta, A. K., Meijer, Q., Melatos, A., Mendell, G., Menendez-Vazquez, A., Menoni, C. S., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyers, P. M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Mihaylov, D. P., Miller, A., Miller, A. L., Miller, B., Millhouse, M., Mills, J. C., Milotti, E., Minenkov, Y., Mio, N., Mir, Ll. M., Miravet-Tenés, M., Mishkin, A., Mishra, C., Mishra, T., Mistry, T., Mitchell, A. L., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Miyo, K., Miyoki, S., Mo, Geoffrey, Modafferi, L. M., Moguel, E., Mogushi, K., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moragues, J., Moraru, D., Morawski, F., More, A., More, S., Moreno, C., Moreno, G., Mori, Y., Morisaki, S., Morisue, N., Moriwaki, Y., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, D., Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Muñiz, E. A., Murray, P. G., Muusse, S., Nadji, S. L., Nagano, K., Nagar, A., Nagar, T., Nakamura, K., Nakano, H., Nakano, M., Nakayama, Y., Napolano, V., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neil, B. F., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neubauer, P., Neunzert, A., Ng, K. Y., Ng, S. W. S., Nguyen, C., Nguyen, P., Nguyen, T., Quynh, L. Nguyen, Ni, J., Ni, W. -T., Nichols, S. A., Nieradka, G., Nishimoto, T., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Notte, J., Novak, J., Nozaki, S., Nurbek, G., Nuttall, L. K., Obayashi, Y., Oberling, J., O'Brien, B. D., O'Dell, J., Oelker, E., Oertel, M., Ogaki, W., Oganesyan, G., Oh, J. J., Oh, K., Oh, S. H., O'Hanlon, T., Ohashi, M., Ohashi, T., Ohkawa, M., Ohme, F., Ohta, H., Okutani, Y., Oliveri, R., Olivetto, C., Oohara, K., Oram, R., O'Reilly, B., Ormiston, R. G., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, E., Oshino, S., Ossokine, S., Osthelder, C., Otabe, S., Ottaway, D. J., Overmier, H., Pace, A. E., Pagano, G., Pagano, R., Pagliaroli, G., Pai, A., Pai, S. A., Pal, S., Palamos, J. R., Palashov, O., Palomba, C., Pan, K. -C., Panda, P. K., Pang, P. T. H., Pannarale, F., Pant, B. C., Panther, F. H., Paoletti, F., Paoli, A., Paolone, A., Pappas, G., Parisi, A., Park, J., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patel, M., Patel, N. R., Pathak, M., Patricelli, B., Patron, A. S., Paul, S., Payne, E., Pedraza, M., Pedurand, R., Pegna, R., Pegoraro, M., Pele, A., Arellano, F. E. Peña, Penano, S., Penn, S., Perego, A., Pereira, A., Pereira, T., Perez, C. J., Périgois, C., Perkins, C. C., Perreca, A., Perriès, S., Perry, J. W., Pesios, D., Petermann, J., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pillant, G., Pillas, M., Pilo, F., Pinard, L., Pineda-Bosque, C., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Piotrzkowski, K., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pong, D. Y. T., Ponrathnam, S., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Pratten, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Prudenzi, L., Puecher, A., Punturo, M., Puosi, F., Puppo, P., Pürrer, M., Qi, H., Quartey, N., Quetschke, V., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raaijmakers, G., Radkins, H., Radulesco, N., Raffai, P., Rail, S. X., Raja, S., Rajan, C., Ramirez, K. E., Ramirez, T. D., Ramos-Buades, A., Rana, D., Rana, J., Rangnekar, P. R., Rapagnani, P., Ray, A., Raymond, V., Raza, N., Razzano, M., Read, J., Regimbau, T., Rei, L., Reid, S., Reid, S. W., Reinhard, M., Reitze, D. H., Relton, P., Renzini, A., Rettegno, P., Revenu, B., Reyes, J., Reza, A., Rezac, M., Rezaei, A. S., Ricci, F., Richards, D., Richardson, J. W., Richardson, L., Riles, K., Rinaldi, S., Robertson, C., Robertson, N. A., Robie, R., Robinet, F., Rocchi, A., Rodriguez, S., Rolland, L., Rollins, J. G., Romanelli, M., Romano, R., Romel, C. L., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Rowlinson, S. J., Roy, Santosh, Roy, Soumen, Royzman, A., Rozza, D., Ruggi, P., Ruiz-Rocha, K., Ryan, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Saha, S., Saito, Y., Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Samajdar, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sanuy, A., Saravanan, T. R., Sarin, N., Sasli, A., Sassolas, B., Satari, H., Sathyaprakash, B. S., Sauter, O., Savage, R. L., Savant, V., Sawada, T., Sawant, H. L., Sayah, S., Schaetzl, D., Scheel, M., Scheuer, J., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schönbeck, A., Schulte, B. W., Schutz, B. F., Schwartz, E., Scott, J., Scott, S. M., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Sequino, V., Sergeev, A., Servignat, G., Setyawati, Y., Shaffer, T., Shahriar, M. S., Shaikh, M. A., Shams, B., Shao, L., Sharma, A., Sharma, P., Shawhan, P., Shcheblanov, N. S., Sheela, A., Sheridan, E., Shikano, Y., Shikauchi, M., Shimizu, H., Shimode, K., Shinkai, H., Shishido, T., Shoda, A., Shoemaker, D. H., Shoemaker, D. M., ShyamSundar, S., Sieniawska, M., Sigg, D., Silenzi, L., Singer, L. P., Singh, D., Singh, M. K., Singh, N., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Soldateschi, J., Somala, S. N., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Soulard, R., Souradeep, T., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Srivastava, A. K., Srivastava, V., Stachie, C., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stops, D. J., Strain, K. A., Strang, L. C., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sugimoto, R., Suh, H. G., Sullivan, A. G., Summerscales, T. Z., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P. J., Suzuki, Takamasa, Suzuki, Takanori, Suzuki, Toshikazu, Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takano, S., Takeda, H., Takeda, M., Talbot, C. J., Talbot, C., Tamanini, N., Tanaka, K., Tanaka, Taiki, Tanaka, Takahiro, Tanasijczuk, A. J., Tanioka, S., Tanner, D. B., Tao, D., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Taranto, C., Taruya, A., Tasson, J. D., Tenorio, R., Terhune, J. E. S., Terkowski, L., Themann, H., Thirugnanasambandam, M. P., Thomas, M., Thomas, P., Thomas, S., Thompson, D., Thompson, E. E., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tiwari, Shubhanshu, Tiwari, Srishti, Tiwari, V., Toivonen, A. M., Tolley, A. E., Tomaru, T., Tomura, T., Tonelli, M., Torres-Forné, A., Torrie, C. I., Melo, I. Tosta e, Tournefier, E., Töyrä, D., Trapananti, A., Travasso, F., Traylor, G., Trenado, J., Trevor, M., Tringali, M. C., Tripathee, A., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsai, D., Tsang, K. W., Tsang, T., Tsao, J-S., Tse, M., Tso, R., Tsuchida, S., Tsukada, L., Tsuna, D., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Tuyenbayev, D., Ubach, H., Ubhi, A. S., Uchikata, N., Uchiyama, T., Udall, R. P., Ueda, A., Uehara, T., Ueno, K., Ueshima, G., Unnikrishnan, C. S., Urban, A. L., Ushiba, T., Utina, A., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valentini, M., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., Van de Walle, A., van Dongen, J., van Haevermaet, H., van Heijningen, J. V., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venneberg, J., Venugopalan, G., Verdier, P., Verkindt, D., Verma, P., Verma, Y., Vermeulen, S. M., Veske, D., Vetrano, F., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Villa-Ortega, V., Vinet, J. -Y., Virtuoso, A., Vitale, S., Vocca, H., von Reis, E. R. G., von Wrangel, J. S. A., Vorvick, C., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Walet, R. C., Walker, M., Wallace, G. S., Wallace, L., Wang, J., Wang, J. Z., Wang, W. H., Ward, R. L., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watada, K., Watarai, D., Watchi, J., Wayt, K. E., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Weller, C. M., Weller, R. A., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., White, D. D., Whiting, B. F., Whittle, C., Wilk, O. S., Wilken, D., Williams, C. E., Williams, D., Williams, M. J., Williamson, A. R., Willis, J. L., Willke, B., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wojtowicz, I. A., Wong, D., Wong, I. C. F., Wright, M., Wu, C., Wu, D. S., Wu, H., Wysocki, D. M., Xiao, L., Yadav, N., Yamada, T., Yamamoto, H., Yamamoto, K., Yamamoto, T., Yamashita, K., Yamazaki, R., Yang, F. W., Yang, K. Z., Yang, L., Yang, Y. -C., Yang, Y., Yang, Yang, Yap, M. J., Yeeles, D. W., Yeh, S. -W., Yelikar, A. B., Yokoyama, J., Yokozawa, T., Yoo, J., Yoshioka, T., Yu, Hang, Yu, Haocun, Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeidler, S., Zelenova, T., Zendri, J. -P., Zevin, M., Zhan, M., Zhang, H., Zhang, J., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, G., Zhao, Y., Zhao, Yue, Zheng, Y., Zhou, R., Zhu, X. J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,General Relativity and Quantum Cosmology - Abstract
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more., Comment: 19 pages, Open Access Journal PDF
- Published
- 2022
- Full Text
- View/download PDF
123. Deconstructing the Retained Austenite Stability: A Comparative Study of Two-Phase and Bulk Microstructures
- Author
-
Kumpati, Joshua, Hasan, Sk. Md., Rolland, Manon Bonvalet, and Borgenstam, Annika
- Published
- 2024
- Full Text
- View/download PDF
124. Displaying quasi-brittle failure using avalanches: paper as a material model
- Author
-
Villette, François, Baroth, Julien, Dufour, Frédéric, and Rolland du Roscoat, Sabine
- Published
- 2024
- Full Text
- View/download PDF
125. Content validity of the EQ-5D-5L with skin irritation and self-confidence bolt-ons in patients with atopic dermatitis: a qualitative think-aloud study
- Author
-
Szlávicz, Eszter, Szabó, Ákos, Kinyó, Ágnes, Szeiffert, Anita, Bancsók, Tamás, Brodszky, Valentin, Gyulai, Rolland, and Rencz, Fanni
- Published
- 2024
- Full Text
- View/download PDF
126. Breaking the stereotypes: how do medical professionals really view nephrologists? A cross-national survey among medical students, residents, and physicians
- Author
-
Maisons, Valentin, Vinchon, Florent, Frajerman, Ariel, Gouy, Evan, Rolland, Franck, Truong, Linh Nam, Hadouiri, Nawale, and Florens, Nans
- Published
- 2024
- Full Text
- View/download PDF
127. March Meeting Report: Speaker, John Lewis "The Southern Australian Marine Flora – Diversity and Change"
- Author
-
Rolland, Jenny and BHL Australia
- Published
- 2023
128. Looking at frailty and intrinsic capacity through a geroscience lens: the ICFSR & Geroscience Task Force
- Author
-
de Souto Barreto, Philipe, Rolland, Yves, Ferrucci, Luigi, Arai, Hidenori, Bischoff-Ferrari, Heike, Duque, Gustavo, Fielding, Roger A., Beard, John R., Muscedere, John, Sierra, Felipe, Vellas, Bruno, and LeBrasseur, Nathan K.
- Published
- 2023
- Full Text
- View/download PDF
129. Reference centiles for intrinsic capacity throughout adulthood and their association with clinical outcomes: a cross-sectional analysis from the INSPIRE-T cohort
- Author
-
Lu, Wan-Hsuan, Rolland, Yves, Guyonnet, Sophie, de Souto Barreto, Philipe, and Vellas, Bruno
- Published
- 2023
- Full Text
- View/download PDF
130. Incidence of four genera of fungi in organic and low-input farming conditions in/on the grain of bread wheat over a 13-year period in France
- Author
-
Rolland, Bernard, Deffains, Denise, Delarue, Patrick, Gilles, Stéphane, Le Campion, Antonin, Monnier, Alain, Jean-Yves-Morlais, Navier, Hélène, Pichard, Alexandre, Walczak, Patrice, and Perronne, Rémi
- Published
- 2023
- Full Text
- View/download PDF
131. Angular Integral Autocorrelation for Speed Estimation in Shear-Wave Elastography
- Author
-
Hamidreza Asemani, Irteza Enan Kabir, Juvenal Ormachea, Marvin M. Doyley, Jannick P. Rolland, and Kevin J. Parker
- Subjects
shear-wave elastography ,reverberant shear wave ,autocorrelation estimator ,ultrasound elastography ,magnetic resonance elastography ,optical coherence elastography ,Physics ,QC1-999 - Abstract
The utilization of a reverberant shear-wave field in shear-wave elastography has emerged as a promising technique for achieving robust shear-wave speed (SWS) estimation. However, many types of estimators cannot accurately measure SWS within such a complicated 3D wave field. This study introduces an advanced autocorrelation estimator based on angular integration known as the angular integral autocorrelation (AIA) approach to address this issue. The AIA approach incorporates all the autocorrelation data from various angles during measurements, resulting in enhanced robustness to both noise and imperfect distributions in SWS estimation. The effectiveness of the AIA estimator for SWS estimation is first validated using a k-Wave simulation of a stiff branching tube in a uniform background. Furthermore, the AIA estimator is applied to ultrasound elastography experiments, magnetic resonance imaging (MRI) experiments, and optical coherence tomography (OCT) studies across a range of different excitation frequencies on tissues and phantoms, including in vivo scans. The results verify the capacity of the AIA approach to enhance the accuracy of SWS estimation and the signal-to-noise ratio (SNR), even within an imperfect reverberant shear-wave field. Compared to simple autocorrelation approaches, the AIA approach can also successfully visualize and define lesions while significantly improving the estimated SWS and SNR in homogeneous background materials and providing improved elastic contrast between structures within the scans. These findings demonstrate the robustness and effectiveness of the AIA approach across a wide range of applications, including ultrasound elastography, magnetic resonance elastography (MRE), and optical coherence elastography (OCE), for accurately identifying the elastic properties of biological tissues in diverse excitation scenarios.
- Published
- 2024
- Full Text
- View/download PDF
132. Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding
- Author
-
Hongjun Bai, Eric Lewitus, Yifan Li, Paul V. Thomas, Michelle Zemil, Mélanie Merbah, Caroline E. Peterson, Thujitha Thuraisamy, Phyllis A. Rees, Agnes Hajduczki, Vincent Dussupt, Bonnie Slike, Letzibeth Mendez-Rivera, Annika Schmid, Erin Kavusak, Mekhala Rao, Gabriel Smith, Jessica Frey, Alicea Sims, Lindsay Wieczorek, Victoria Polonis, Shelly J. Krebs, Julie A. Ake, Sandhya Vasan, Diane L. Bolton, M. Gordon Joyce, Samantha Townsley, and Morgane Rolland
- Subjects
Science - Abstract
Abstract An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env’s conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.
- Published
- 2024
- Full Text
- View/download PDF
133. Associations between physical activity levels and ATPase inhibitory factor 1 concentrations in older adults
- Author
-
Jérémy Raffin, Yves Rolland, Annelise Genoux, Guillaume Combes, Mikael Croyal, Bertrand Perret, Sophie Guyonnet, Bruno Vellas, Laurent O. Martinez, and Philipe de Souto Barreto
- Subjects
Aging ,Apolipoprotein ,Bioenergetics ,Exerkine ,Mitochondria ,Sports ,GV557-1198.995 ,Sports medicine ,RC1200-1245 - Abstract
Background: Adenosine triphosphatase inhibitory factor 1 (IF1) is a key protein involved in energy metabolism. IF1 has been linked to various age-related diseases, although its relationship with physical activity (PA) remains unclear. Additionally, the apolipoprotein A-I (apoA-I), a PA-modulated lipoprotein, could play a role in this relationship because it shares a binding site with IF1 on the cell-surface ATP synthase. We examined here the associations between chronic PA and plasma IF1 concentrations among older adults, and we investigated whether apoA-I mediated these associations. Methods: In the present work, 1096 healthy adults (63.8% females) aged 70 years and over who were involved in the Multidomain Alzheimer Prevention Trial study were included. IF1 plasma concentrations (square root of ng/mL) were measured at the 1-year visit of the Multidomain Alzheimer Prevention Trial, while PA levels (square root of metabolic equivalent task min/week) were assessed using questionnaires administered each year from baseline to the 3-year visit. Multiple linear regressions were performed to investigate the associations between the first-year mean PA levels and IF1 concentrations. Mediation analyses were conducted to examine whether apoA-I mediated these associations. Mixed-effect linear regressions were carried out to investigate whether the 1-year visit IF1 concentrations predicted subsequent changes in PA. Results: Multiple linear regressions indicated that first-year mean PA levels were positively associated with IF1 concentrations (B = 0.021; SE = 0.010; p = 0.043). Mediation analyses revealed that about 37.7% of this relationship was mediated by apoA-I (Bab = 0.008; SE = 0.004; p = 0.023). Longitudinal investigations demonstrated that higher concentrations of IF1 at the 1-year visit predicted a faster decline in PA levels over the subsequent 2 years (time × IF1: B = –0.148; SE = 0.066; p = 0.025). Conclusion: This study demonstrates that regular PA is associated with plasma IF1 concentrations, and it suggests that apoA-I partly mediates this association. Additionally, this study finds that baseline concentrations of IF1 can predict future changes in PA. However, further research is needed to fully understand the mechanisms underlying these observations.
- Published
- 2024
- Full Text
- View/download PDF
134. Fungal Necrotrophic Interaction: A Case Study of Seed Immune Response to a Seed-Borne Pathogen
- Author
-
Mailen Ortega-Cuadros, Sophie Aligon, Tatiana Arias, Aída M. Vasco-Palacios, Cassandre Rosier--Pennevert, Natalia Guschinskaya, Aurélia Rolland, and Philippe Grappin
- Subjects
seed-borne pathogens ,Alternaria brassicicola ,seed defense ,susceptible response ,transcriptomics ,Arabidopsis ,Plant culture ,SB1-1110 - Abstract
Seeds play a vital role in the perpetuation of plant species, both in natural environments and agriculture. However, they often face challenges from biotic stresses, such as seed-borne pathogenic fungi. The transgenerational transmission of these seed-borne fungi, along with their dissemination during seed commercialization, can contribute to the emergence of global epidemic diseases, resulting in substantial economic losses. Despite the recognized impact of seed-borne pathogens on agriculture, our understanding of seed–pathogen interactions remains limited. This review establishes parallels between the current state of knowledge regarding seed responses to pathogen interactions and well-established plant defense models, primarily derived from typical physiological conditions observed during leaf infections. Examining fragmented results from various pathosystems, this review seeks to offer a comprehensive overview of our current understanding of interactions during seed development and germination. The necrotrophic interactions in Brassicaceae are described using recent transcriptomic and genetic studies focused on the Arabidopsis/Alternaria pathosystem, which illustrates original response pathways in germinating seeds that markedly differ from the general concept of plant–pathogen interactions. The co-existence of regulatory mechanisms affecting both seed resistance and susceptibility, potentially promoting fungal colonization, is examined. The vulnerable response during germination emerges as a crucial consideration in the context of sustainable plant health management in agriculture.
- Published
- 2024
- Full Text
- View/download PDF
135. Cost of care pathways before and after appropriate and inappropriate transfers to the emergency department among nursing home residents: results from the FINE study
- Author
-
E. Gombault-Datzenko, N. Costa, M. Mounié, N. Tavassoli, C. Mathieu, H. Roussel, J. M. Lagarrigue, E. Berard, Y. Rolland, and L. Molinier
- Subjects
Cost ,Economics ,Long-term care unit ,Nursing home ,Transfer to emergency department ,Geriatrics ,RC952-954.6 - Abstract
Abstract Background Transfers of nursing home (NH) residents to the emergency department (ED) is frequent. Our main objective was to assess the cost of care pathways 6 months before and after the transfer to the emergency department among NH residents, according to the type of transfer (i.e. appropriate or inappropriate). Methods This was a part of an observational, multicenter, case-control study: the Factors associated with INappropriate transfer to the Emergency department among nursing home residents (FINE) study. Sixteen public hospitals of the former Midi-Pyrénées region participated in recruitment, in 2016. During the inclusion period, all NH residents arriving at the ED were included. A pluri-disciplinary team categorized each transfer to the ED into 2 groups: appropriate or inappropriate. Direct medical and nonmedical costs were assessed from the French Health Insurance (FHI) perspective. Healthcare resources were retrospectively gathered from the FHI database and valued using the tariffs reimbursed by the FHI. Costs were recorded over a 6-month period before and after transfer to the ED. Other variables were used for analysis: sex, age, Charlson score, season, death and presence inside the NH of a coordinating physician or a geriatric nursing assistant. Results Among the 1037 patients initially included in the FINE study, 616 who were listed in the FHI database were included in this economic study. Among them, 132 (21.4%) had an inappropriate transfer to the ED. In the 6 months before ED transfer, total direct costs on average amounted to 8,145€ vs. 6,493€ in the inappropriate and appropriate transfer groups, respectively. In the 6 months after ED transfer, they amounted on average to 9,050€ vs. 12,094€. Conclusions Total costs on average are higher after transfer to the ED, but there is no significant increase in healthcare expenditure with inappropriate ED transfer. Support for NH staff and better pathways of care could be necessary to reduce healthcare expenditures in NH residents. Trial registration clinicaltrials.gov, NCT02677272.
- Published
- 2024
- Full Text
- View/download PDF
136. Datascape: exploring heterogeneous dataspace
- Author
-
Jakez Rolland, Ronan Boutin, Damien Eveillard, and Benoit Delahaye
- Subjects
Medicine ,Science - Abstract
Abstract Data science is a powerful field for gaining insights, comparing, and predicting behaviors from datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a lack of genericity. Moreover, the shape of a dataset, which structures its contained information and uncertainties, is rarely considered. Inspired by state-of-the-art manifold learning and hull estimations algorithms, we propose a novel framework, the datascape, that leverages topology and graph theory to abstract heterogeneous datasets. Built upon the combination of a nearest neighbor graph, a set of convex hulls, and a metric distance that respects the shape of the data, the datascape allows exploration of the dataset’s underlying space. We show that the datascape can uncover underlying functions from simulated datasets, build predictive algorithms with performance close to state-of-the-art algorithms, and reveal insightful geodesic paths between points. It demonstrates versatility through ecological, medical, and simulated data use cases.
- Published
- 2024
- Full Text
- View/download PDF
137. chattering analysis of an electro-hydraulic backstepping velocity controller
- Author
-
Geremino ELLA ENY, Honorine ANGUE MINTSA, NZAMBA SENOUVEAU, and Rolland Michel ASSOUMOU NZUE
- Subjects
sensitivity analysis ,chattering analysis ,backstepping controller ,electro-hydraulic servo system ,fast unmodeled dynamics ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
This paper focuses on the chattering analysis in a backstepping controller used to drive an electro-hydraulic servo system. The chattering phenomenon, well known in sliding mode control, strongly reduces operating performance while causing premature wear of the system. Four cases are studied to highlight the factors influencing the chattering in the backstepping control. In the first case, the effect of the unmodeled fast servo valve dynamics is analysed by comparing a reduced-order backstepping controller with a full-order controller. The second case analyses the sensitivity to the tuning gains of the backstepping controller. The third case emphasises the influence of the parameter of sign function approximation. The last case analyses the sensitivity of the parameter of the time derivative of the virtual controls. The simulation results in the Matlab/Simulink show that the chattering is mitigated by an appropriate gains tuning but above all an appropriate calculation of the derivatives of the virtual controls, particularly for high-order systems.
- Published
- 2024
- Full Text
- View/download PDF
138. HairNet2: deep learning to quantify cotton leaf hairiness, a complex genetic and environmental trait
- Author
-
Moshiur Farazi, Warren C. Conaty, Lucy Egan, Susan P. J. Thompson, Iain W. Wilson, Shiming Liu, Warwick N. Stiller, Lars Petersson, and Vivien Rolland
- Subjects
Deep learning ,Neural network ,Machine learning ,Phenotyping ,Trichome ,Cotton ,Plant culture ,SB1-1110 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Cotton accounts for 80% of the global natural fibre production. Its leaf hairiness affects insect resistance, fibre yield, and economic value. However, this phenotype is still qualitatively assessed by visually attributing a Genotype Hairiness Score (GHS) to a leaf/plant, or by using the HairNet deep-learning model which also outputs a GHS. Here, we introduce HairNet2, a quantitative deep-learning model which detects leaf hairs (trichomes) from images and outputs a segmentation mask and a Leaf Trichome Score (LTS). Results Trichomes of 1250 images were annotated (AnnCoT) and a combination of six Feature Extractor modules and five Segmentation modules were tested alongside a range of loss functions and data augmentation techniques. HairNet2 was further validated on the dataset used to build HairNet (CotLeaf-1), a similar dataset collected in two subsequent seasons (CotLeaf-2), and a dataset collected on two genetically diverse populations (CotLeaf-X). The main findings of this study are that (1) leaf number, environment and image position did not significantly affect results, (2) although GHS and LTS mostly correlated for individual GHS classes, results at the genotype level revealed a strong LTS heterogeneity within a given GHS class, (3) LTS correlated strongly with expert scoring of individual images. Conclusions HairNet2 is the first quantitative and scalable deep-learning model able to measure leaf hairiness. Results obtained with HairNet2 concur with the qualitative values used by breeders at both extremes of the scale (GHS 1-2, and 5-5+), but interestingly suggest a reordering of genotypes with intermediate values (GHS 3-4+). Finely ranking mild phenotypes is a difficult task for humans. In addition to providing assistance with this task, HairNet2 opens the door to selecting plants with specific leaf hairiness characteristics which may be associated with other beneficial traits to deliver better varieties.
- Published
- 2024
- Full Text
- View/download PDF
139. Blunted brain responses to neutral faces in healthy first-degree relatives of patients with schizophrenia: an image-based fMRI meta-analysis
- Author
-
Anna M. Fiorito, Giuseppe Blasi, Jérôme Brunelin, Asadur Chowdury, Vaibhav A. Diwadkar, Vina M. Goghari, Ruben C. Gur, Jun Soo Kwon, Tiziana Quarto, Benjamin Rolland, Michael J. Spilka, Daniel H. Wolf, Je-Yeon Yun, Eric Fakra, and Guillaume Sescousse
- Subjects
Psychiatry ,RC435-571 - Abstract
Abstract Schizophrenia is characterized by the misattribution of emotional significance to neutral faces, accompanied by overactivations of the limbic system. To understand the disorder’s genetic and environmental contributors, investigating healthy first-degree relatives is crucial. However, inconsistent findings exist regarding their ability to recognize neutral faces, with limited research exploring the cerebral correlates of neutral face processing in this population. Thus, we here investigated brain responses to neutral face processing in healthy first-degree relatives through an image-based meta-analysis of functional magnetic resonance imaging studies. We included unthresholded group-level T-maps from 5 studies comprising a total of 120 first-degree relatives and 150 healthy controls. In sensitivity analyses, we ran a combined image- and coordinate-based meta-analysis including 7 studies (157 first-degree relatives, 207 healthy controls) aiming at testing the robustness of the results in a larger sample of studies. Our findings revealed a pattern of decreased brain responses to neutral faces in relatives compared with healthy controls, particularly in limbic areas such as the bilateral amygdala, hippocampus, and insula. The same pattern was observed in sensitivity analyses. These results contrast with the overactivations observed in patients, potentially suggesting that this trait could serve as a protective factor in healthy relatives. However, further research is necessary to test this hypothesis.
- Published
- 2024
- Full Text
- View/download PDF
140. Quantifying how single dose Ad26.COV2.S vaccine efficacy depends on Spike sequence features
- Author
-
Craig A. Magaret, Li Li, Allan C. deCamp, Morgane Rolland, Michal Juraska, Brian D. Williamson, James Ludwig, Cindy Molitor, David Benkeser, Alex Luedtke, Brian Simpkins, Fei Heng, Yanqing Sun, Lindsay N. Carpp, Hongjun Bai, Bethany L. Dearlove, Elena E. Giorgi, Mandy Jongeneelen, Boerries Brandenburg, Matthew McCallum, John E. Bowen, David Veesler, Jerald Sadoff, Glenda E. Gray, Sanne Roels, An Vandebosch, Daniel J. Stieh, Mathieu Le Gars, Johan Vingerhoets, Beatriz Grinsztejn, Paul A. Goepfert, Leonardo Paiva de Sousa, Mayara Secco Torres Silva, Martin Casapia, Marcelo H. Losso, Susan J. Little, Aditya Gaur, Linda-Gail Bekker, Nigel Garrett, Carla Truyers, Ilse Van Dromme, Edith Swann, Mary A. Marovich, Dean Follmann, Kathleen M. Neuzil, Lawrence Corey, Alexander L. Greninger, Pavitra Roychoudhury, Ollivier Hyrien, and Peter B. Gilbert
- Subjects
Science - Abstract
Abstract In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe–critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p
- Published
- 2024
- Full Text
- View/download PDF
141. Optimal parameters estimation for K-edge subtraction imaging using PixiRad-2/PixieIII photon counting detector on a conventional laboratory X-ray micro-tomograph
- Author
-
Granger, Rémi, Salvo, Luc, Roscoat, Sabine Rolland du, and Lhuissier, Pierre
- Subjects
Physics - Instrumentation and Detectors - Abstract
Photon Counting Detectors (PCDs) open new opportunities in X-ray imaging. Pixie III is a PCD using simultaneously two energy thresholds. This enables to acquire images using two distinct energy bins in a single exposure and allows to perform K-Edge Subtraction (KES) imaging with laboratory sources. In that context, one has however to deal with an energy bin optimization: narrow energy bins lead to high KES signal at the expense of higher noise, while wider energy bins lead to poor KES signal but better statistics. This work presents a model that aims at finding the optimal energy thresholds and source voltage in order to retrieve the best Contrast to Noise Ratio (CNR) for a given sample. The model also optimizes the parameters for conventional absorption modality and compares both modalities. Since the input flux and the energy difference between the thresholds influence image noise, this is included in the model using phenomenological laws. The model is then compared to empirical optimization by experimental screening of the parameters using model materials composed of barium, iodine and water. Finally, it is explained how to model the influence of sample composition on the predicted CNR values.
- Published
- 2022
- Full Text
- View/download PDF
142. Exceeding octave tunable Terahertz waves with zepto-second level timing noise
- Author
-
Amin, Rubab, Greenberg, James, Heffernan, Brendan, Nagatsuma, Tadao, and Rolland, Antoine
- Subjects
Physics - Optics ,Physics - Applied Physics - Abstract
Spectral purity of any millimeter wave (mmW) source is of the utmost interest in low-noise applications. Optical synthesis via photomixing is an attractive source for such mmWs, which usually involves expensive spectrally pure lasers with narrow linewidths approaching monochromaticity due to their inherent fabrication costs or specifications. Here, we report an alternative option for enhancing the spectral purity of inexpensive semiconductor diode lasers via a self-injection locking technique through corresponding Stokes waves from a fiber Brillouin cavity exhibiting greatly improved phase noise levels and large wavelength tunability of ~1.8 nm. We implement a system with two self-injected diode lasers on a common Brillouin cavity aimed at difference frequency generation in the mmW and THz region. We generate tunable sub-mmW (0.3 and 0.5 THz) waves by beating the self-injected two wavelength Stokes light on a uni-travelling carrier photodiode and characterize the noise performance. The sub-mmW features miniscule timing noise levels in the zepto-second (zs.Hz^-0.5) scale outperforming the state of the art dissipative Kerr soliton based micro-resonator setups while offering broader frequency tunability. These results suggest a viable inexpensive alternative for mmW sources aimed at low-noise applications featuring lab-scale footprints and rack-mounted portability while paving the way for chip-scale photonic integration., Comment: 31 pages
- Published
- 2022
143. ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors
- Author
-
Utina, A., Amato, A., Arends, J., Arina, C., de Baar, M., Baars, M., Baer, P., van Bakel, N., Beaumont, W., Bertolini, A., van Beuzekom, M., Biersteker, S., Binetti, A., ter Brake, H. J. M., Bruno, G., Bryant, J., Bulten, H. J., Busch, L., Cebeci, P., Collette, C., Cooper, S., Cornelissen, R., Cuijpers, P., van Dael, M., Danilishin, S., Dixit, D., van Doesburg, S., Doets, M., Elsinga, R., Erends, V., van Erps, J., Freise, A., Frenaij, H., Garcia, R., Giesberts, M., Grohmann, S., Van Haevermaet, H., Heijnen, S., van Heijningen, J. V., Hennes, E., Hennig, J. -S., Hennig, M., Hertog, T., Hild, S., Hoffmann, H. -D., Hoft, G., Hopman, M., Hoyland, D., Iandolo, G. A., Ietswaard, C., Jamshidi, R., Jansweijer, P., Jones, A., Jones, P., Knust, N., Koekoek, G., Koroveshi, X., Kortekaas, T., Koushik, A. N., Kraan, M., van de Kraats, M., Kranzhoff, S. L., Kuijer, P., Kukkadapu, K. A., Lam, K., Letendre, N., Li, P., Limburg, R., Linde, F., Locquet, J. -P., Loosen, P., Lueck, H., Martınez, M., Masserot, A., Meylahn, F., Molenaar, M., Mow-Lowry, C., Mundet, J., Munneke, B., van Nieuwland, L., Pacaud, E., Pascucci, D., Petit, S., Van Ranst, Z., Raskin, G., Recaman, P. M., van Remortel, N., Rolland, L., de Roo, L., Roose, E., Rosier, J. C., Ryckbosch, D., Schouteden, K., Sevrin, A., Sider, A., Singha, A., Spagnuolo, V., Stahl, A., Steinlechner, J., Steinlechner, S., Swinkels, B., Szilasi, N., Tacca, M., Thienpont, H., Vecchio, A., Verkooijen, H., Vermeer, C. H., Vervaeke, M., Visser, G., Walet, R., Werneke, P., Westhofen, C., Willke, B., Xhahi, A., and Zhang, T.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology ,Physics - Instrumentation and Detectors - Abstract
The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K.
- Published
- 2022
- Full Text
- View/download PDF
144. Child BMI trajectories: the history of a concept over the last four decades
- Author
-
Marie-Françoise Rolland-Cachera
- Subjects
Biology (General) ,QH301-705.5 ,Human anatomy ,QM1-695 ,Physiology ,QP1-981 - Published
- 2024
- Full Text
- View/download PDF
145. Inequalities in the risk and prevention of invasive meningococcal disease in the United States – A systematic literature review
- Author
-
Shahina Begum, Oscar Herrera-Restrepo, Catherine Rolland, Sneha Purushotham, Anar Andani, Hiral Shah, and Zeki Kocaata
- Subjects
Invasive meningococcal disease ,inequality ,bacterial meningitis ,prevention ,health equity ,United States ,Immunologic diseases. Allergy ,RC581-607 ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Vaccination remains the most effective strategy to prevent invasive meningococcal disease (IMD), with MenACWY, MenB and MenABCWY recommended for adolescents/young adults in the United States (US). However, vaccination coverage remains suboptimal, which could be related to population inequalities. To understand the impact of IMD risk, prevention and control inequalities, a global systematic literature review (Medline, Embase, 2012–2022) was conducted on individual, socioeconomic, and environmental inequalities associated with IMD risk, prevention and control in all ages. Studies on IMD risk (n = 15) and prevention (n = 14) inequalities were identified. IMD incidence proportions were higher in Medicaid versus commercially insured populations, and IMD mortality was higher in poorer neighborhoods. White adolescents, adolescents from lower income families, and with lower maternal education were more likely to receive MenB vaccination; while Black and Hispanic adolescents, and adolescents with higher family incomes, were more likely to receive MenACWY vaccination. Meningococcal vaccination was associated with being up-to-date with other vaccinations, having multiple healthcare/well child visits, having a pediatrician as healthcare provider (HCP), and attending private facilities; while being uninsured was associated with lower vaccination. States with a MenACWY vaccination mandate and higher pediatrician-to-children ratios had higher vaccination rates. Important inequalities were due to individual differences, socioeconomic, and environmental factors. IMD prevention is suboptimal, especially among adolescents/young adults. To improve health equity, health policy makers could ameliorate meningococcal vaccination coverage across the US, with simplified and stronger meningococcal vaccine recommendations from public health authorities, and initiatives to enhance parental/patient and HCP knowledge of IMD and vaccine recommendations.
- Published
- 2024
- Full Text
- View/download PDF
146. Proteolytic bacteria expansion during colitis amplifies inflammation through cleavage of the external domain of PAR2
- Author
-
Liam Emile Rondeau, Bruna Barbosa Da Luz, Alba Santiago, Miriam Bermudez-Brito, Amber Hann, Giada De Palma, Jennifer Jury, Xuanyu Wang, Elena Francisca Verdu, Heather Jean Galipeau, Corinne Rolland, Celine Deraison, Wolfram Ruf, Premysl Bercik, Nathalie Vergnolle, and Alberto Caminero
- Subjects
Inflammatory bowel disease ,proteolytic activity ,inflammation ,colitis ,DSS-induced colitis ,protease-activated receptor 2 (PAR2) ,Diseases of the digestive system. Gastroenterology ,RC799-869 - Abstract
Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.
- Published
- 2024
- Full Text
- View/download PDF
147. A phase 2, multicenter, open-label study of anti-LAG-3 ieramilimab in combination with anti-PD-1 spartalizumab in patients with advanced solid malignancies
- Author
-
Chia-Chi Lin, Elena Garralda, Patrick Schöffski, David S. Hong, Lillian L. Siu, Miguel Martin, Michela Maur, Rina Hui, Ross A Soo, Joanne Chiu, Tian Zhang, Brigette Ma, Chrisann Kyi, Daniel SW Tan, Philippe A. Cassier, John Sarantopoulos, Andrew Weickhardt, Richard D. Carvajal, Jennifer Spratlin, Taito Esaki, Fréderic Rolland, Wallace Akerley, Barbara Deschler-Baier, Lawrence Rispoli, Tanay S. Samant, Niladri Roy Chowdhury, Daniel Gusenleitner, Eunice L. Kwak, Vasileios Askoxylakis, and Filippo De Braud
- Subjects
Efficacy ,ieramilimab ,LAG-3 inhibitor ,safety ,spartalizumab ,Immunologic diseases. Allergy ,RC581-607 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
ABSTRACTIeramilimab, a humanized anti-LAG-3 monoclonal antibody, was well tolerated in combination with the anti-PD-1 antibody spartalizumab in a phase 1 study. This phase 2 study aimed to further investigate the efficacy and safety of combination treatment in patients with selected advanced (locally advanced or metastatic) solid malignancies. Eligible patients with non-small cell lung cancer (NSCLC), melanoma, renal cell carcinoma (RCC), mesothelioma, and triple-negative breast cancer (TNBC) were grouped depending on prior anti-PD-1/L1 therapy (anti-PD-1/L1 naive or anti-PD-1/L1 pretreated). Patients received ieramilimab (400 mg) followed by spartalizumab (300 mg) every 3 weeks. The primary endpoint was objective response rate (ORR), along with safety, pharmacokinetics, and biomarker assessments. Of 235 patients, 142 were naive to anti-PD-1/L1 and 93 were pretreated with anti-PD-1/L1 antibodies. Durable responses (>24 months) were seen across all indications for patients naive to anti-PD-1/L1 and in melanoma and RCC patients pretreated with anti-PD1/L1. The most frequent study drug-related AEs were pruritus (15.5%), fatigue (10.6%), and rash (10.6%) in patients naive to anti-PD-1/L1 and fatigue (18.3%), rash (14.0%), and nausea (10.8%) in anti-PD-1/L1 pretreated patients. Biomarker assessment indicated higher expression of T-cell-inflamed gene signature at baseline among responding patients. Response to treatment was durable (>24 months) in some patients across all enrolled indications, and safety findings were in accordance with previous and current studies exploring LAG-3/PD-1 blockade.
- Published
- 2024
- Full Text
- View/download PDF
148. Relations of Current and Past Cancer with Severe Outcomes among 104,590 Hospitalized COVID-19 Patients: The COVID EHR Cohort at the University of Wisconsin
- Author
-
Nolan, Margaret B, Piasecki, Thomas M, Smith, Stevens S, Baker, Timothy B, Fiore, Michael C, Adsit, Robert T, Bolt, Daniel M, Conner, Karen L, Bernstein, Steven L, Eng, Oliver D, Lazuk, David, Gonzalez, Alec, Hayes-Birchler, Todd, Jorenby, Douglas E, D'Angelo, Heather, Kirsch, Julie A, Williams, Brian S, Kent, Sean, Kim, Hanna, Lubanski, Stanley A, Yu, Menggang, Suk, Youmi, Cai, Yuxin, Kashyap, Nitu, Mathew, Jomol, McMahan, Gabriel, Rolland, Betsy, Tindle, Hilary A, Warren, Graham W, Abu-el-rub, Noor, An, Lawrence C, Boyd, Andrew D, Brunzell, Darlene H, Carrillo, Victor A, Chen, Li-Shiun, Davis, James M, Deshmukh, Vikrant G, Dilip, Deepika, Goldstein, Adam, Ha, Patrick K, Iturrate, Eduardo, Jose, Thulasee, Khanna, Niharika, King, Andrea, Klass, Elizabeth, Lui, Michelle, Mermelstein, Robin J, Poon, Chester, Tong, Elisa, Wilson, Karen M, Theobald, Wendy E, and Slutske, Wendy S
- Subjects
Cancer ,Clinical Research ,Prevention ,Patient Safety ,Good Health and Well Being ,Adult ,Humans ,COVID-19 Vaccines ,Pandemics ,Universities ,Wisconsin ,COVID-19 ,Neoplasms ,Hospitalization ,Medical and Health Sciences ,Epidemiology - Abstract
BackgroundThere is mixed evidence about the relations of current versus past cancer with severe COVID-19 outcomes and how they vary by patient and cancer characteristics.MethodsElectronic health record data of 104,590 adult hospitalized patients with COVID-19 were obtained from 21 United States health systems from February 2020 through September 2021. In-hospital mortality and ICU admission were predicted from current and past cancer diagnoses. Moderation by patient characteristics, vaccination status, cancer type, and year of the pandemic was examined.Results6.8% of the patients had current (n = 7,141) and 6.5% had past (n = 6,749) cancer diagnoses. Current cancer predicted both severe outcomes but past cancer did not; adjusted odds ratios (aOR) for mortality were 1.58 [95% confidence interval (CI), 1.46-1.70] and 1.04 (95% CI, 0.96-1.13), respectively. Mortality rates decreased over the pandemic but the incremental risk of current cancer persisted, with the increment being larger among younger vs. older patients. Prior COVID-19 vaccination reduced mortality generally and among those with current cancer (aOR, 0.69; 95% CI, 0.53-0.90).ConclusionsCurrent cancer, especially among younger patients, posed a substantially increased risk for death and ICU admission among patients with COVID-19; prior COVID-19 vaccination mitigated the risk associated with current cancer. Past history of cancer was not associated with higher risks for severe COVID-19 outcomes for most cancer types.ImpactThis study clarifies the characteristics that modify the risk associated with cancer on severe COVID-19 outcomes across the first 20 months of the COVID-19 pandemic. See related commentary by Egan et al., p. 3.
- Published
- 2023
149. Genetic Heterogeneity Shapes Brain Connectivity in Psychiatry.
- Author
-
Moreau, Clara, Harvey, Annabelle, Kumar, Kuldeep, Huguet, Guillaume, Urchs, Sebastian, Douard, Elise, Schultz, Laura, Sharmarke, Hanad, Jizi, Khadije, Martin, Charles-Olivier, Younis, Nadine, Tamer, Petra, Rolland, Thomas, Martineau, Jean-Louis, Orban, Pierre, Silva, Ana, Hall, Jeremy, van den Bree, Marianne, Owen, Michael, Linden, David, Labbe, Aurelie, Lippé, Sarah, Almasy, Laura, Glahn, David, Thompson, Paul, Bourgeron, Thomas, Bellec, Pierre, Jacquemont, Sebastien, and Bearden, Carrie
- Subjects
Autism spectrum disorder ,Copy number variant ,Functional connectivity ,Genetic heterogeneity ,Polygenic score ,Transdiagnostic approach ,Humans ,Genetic Heterogeneity ,Genetic Predisposition to Disease ,Multifactorial Inheritance ,Brain ,DNA Copy Number Variations ,Psychiatry ,Genome-Wide Association Study - Abstract
BACKGROUND: Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic risk scores (PRSs) as well as idiopathic psychiatric conditions and traits. METHODS: Resting-state functional magnetic resonance imaging data were processed using the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/hyperactivity disorder), and 2 traits (31,424 unaffected control subjects). RESULTS: Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65 z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02-0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r = 0.9, p = 5.93 × 10-6). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r = -0.88, p = 8.78 × 10-6). PRSs had disproportionately low effect sizes on connectivity compared with CNVs conferring similar risk for disease. CONCLUSIONS: Heterogeneity and polygenicity affect our ability to detect brain connectivity alterations underlying psychiatric manifestations.
- Published
- 2023
150. Data envelopment analysis to evaluate the efficiency of tobacco treatment programs in the NCI Moonshot Cancer Center Cessation Initiative
- Author
-
Pluta, Kathryn, Hohl, Sarah D, D’Angelo, Heather, Ostroff, Jamie S, Shelley, Donna, Asvat, Yasmin, Chen, Li-Shiun, Cummings, K Michael, Dahl, Neely, Day, Andrew T, Fleisher, Linda, Goldstein, Adam O, Hayes, Rashelle, Hitsman, Brian, Buckles, Deborah Hudson, King, Andrea C, Lam, Cho Y, Lenhoff, Katie, Levinson, Arnold H, Minion, Mara, Presant, Cary, Prochaska, Judith J, Shoenbill, Kimberly, Simmons, Vani, Taylor, Kathryn, Tindle, Hilary, Tong, Elisa, White, Justin S, Wiseman, Kara P, Warren, Graham W, Baker, Timothy B, Rolland, Betsy, Fiore, Michael C, and Salloum, Ramzi G
- Subjects
Health Services and Systems ,Health Sciences ,Clinical Research ,Cancer ,Bioengineering ,Comparative Effectiveness Research ,Health Services ,Dissemination and Implementation Research ,Tobacco Smoke and Health ,Tobacco ,Good Health and Well Being ,Data envelopment analysis ,Efficiency ,Program performance ,Implementation costs ,Smoking cessation ,Implementation science ,Tobacco treatment ,Health services and systems ,Public health - Abstract
BackgroundThe Cancer Center Cessation Initiative (C3I) is a National Cancer Institute (NCI) Cancer Moonshot Program that supports NCI-designated cancer centers developing tobacco treatment programs for oncology patients who smoke. C3I-funded centers implement evidence-based programs that offer various smoking cessation treatment components (e.g., counseling, Quitline referrals, access to medications). While evaluation of implementation outcomes in C3I is guided by evaluation of reach and effectiveness (via RE-AIM), little is known about technical efficiency-i.e., how inputs (e.g., program costs, staff time) influence implementation outcomes (e.g., reach, effectiveness). This study demonstrates the application of data envelopment analysis (DEA) as an implementation science tool to evaluate technical efficiency of C3I programs and advance prioritization of implementation resources.MethodsDEA is a linear programming technique widely used in economics and engineering for assessing relative performance of production units. Using data from 16 C3I-funded centers reported in 2020, we applied input-oriented DEA to model technical efficiency (i.e., proportion of observed outcomes to benchmarked outcomes for given input levels). The primary models used the constant returns-to-scale specification and featured cost-per-participant, total full-time equivalent (FTE) effort, and tobacco treatment specialist effort as model inputs and reach and effectiveness (quit rates) as outcomes.ResultsIn the DEA model featuring cost-per-participant (input) and reach/effectiveness (outcomes), average constant returns-to-scale technical efficiency was 25.66 (SD = 24.56). When stratified by program characteristics, technical efficiency was higher among programs in cohort 1 (M = 29.15, SD = 28.65, n = 11) vs. cohort 2 (M = 17.99, SD = 10.16, n = 5), with point-of-care (M = 33.90, SD = 28.63, n = 9) vs. no point-of-care services (M = 15.59, SD = 14.31, n = 7), larger (M = 33.63, SD = 30.38, n = 8) vs. smaller center size (M = 17.70, SD = 15.00, n = 8), and higher (M = 29.65, SD = 30.99, n = 8) vs. lower smoking prevalence (M = 21.67, SD = 17.21, n = 8).ConclusionMost C3I programs assessed were technically inefficient relative to the most efficient center benchmark and may be improved by optimizing the use of inputs (e.g., cost-per-participant) relative to program outcomes (e.g., reach, effectiveness). This study demonstrates the appropriateness and feasibility of using DEA to evaluate the relative performance of evidence-based programs.
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.