101. Workforce planning and production scheduling in a reconfigurable manufacturing system facing the COVID-19 pandemic
- Author
-
Behdin, Vahedi-Nouri, Reza, Tavakkoli-Moghaddam, Zdeněk, Hanzálek, Alexandre, Dolgui, School of Industrial Engineering [Tehran], College of Engineering [Tehran], University of Tehran-University of Tehran, Czech Technical University in Prague (CTU), Département Automatique, Productique et Informatique (IMT Atlantique - DAPI), IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Modélisation, Optimisation et DEcision pour la Logistique, l'Industrie et les Services (LS2N - équipe MODELIS), Laboratoire des Sciences du Numérique de Nantes (LS2N), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Nantes Université (Nantes Univ), and This work was supported by the European Regional DevelopmentFund under the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).
- Subjects
Hardware and Architecture ,Control and Systems Engineering ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,[INFO]Computer Science [cs] ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,Industrial and Manufacturing Engineering ,Software - Abstract
International audience; Due to the outbreak of the COVID-19 pandemic, the manufacturing sector has been experiencing unprecedentedissues, including severe fluctuation in demand, restrictions on the availability and utilization of the workforce,and governmental regulations. Adopting conventional manufacturing practices and planning approaches undersuch circumstances cannot be effective and may jeopardize workers’ health and satisfaction, as well as thecontinuity of businesses. Reconfigurable Manufacturing System (RMS) as a new manufacturing paradigm hasdemonstrated a promising performance when facing abrupt market or system changes. This paper investigates ajoint workforce planning and production scheduling problem during the COVID-19 pandemic by leveraging theadaptability and flexibility of an RMS. In this regard, workers’ COVID-19 health risk arising from their allocation,and workers’ preferences for flexible working hours are incorporated into the problem. Accordingly, first, novelMixed-Integer Linear Programming (MILP) and Constraint Programming (CP) models are developed to formulatethe problem. Next, exploiting the problem’s intrinsic characteristics, two properties of an optimal solution areidentified. By incorporating these properties, the initial MILP and CP models are considerably improved. Af-terward, to benefit from the strengths of both improved models, a novel hybrid MILP-CP solution approach isdevised. Finally, comprehensive computational experiments are conducted to evaluate the performance of theproposed models and extract useful managerial insights on the system flexibility.
- Published
- 2022
- Full Text
- View/download PDF