Shi, Hailong, Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Harbin Institute of Technology (HIT), Université de Lorraine, Harbin Institute of Technology (Chine), Yudong Zhang, Lidong Wang, and Weimin Gan
L'auteur a souhaité limiter l'accès aux membres de l'Enseignement supérieur français jusqu'au 31 décembre 2021.; Recrystallization is the intrinsic process of cold-deformed metallic materials that occurs inevitably during the thermal treatment. The produced recrystallization texture contributes to the anisotropy of the mechanical and physical properties. Motivated by the minimization of modern products, 2D materials and laminated composites are increasingly demanded by many applications. Thus, for both scientific and engineering purposes, investigations on the recrystallization of such materials are needed to understand the underlying mechanisms. In this work, Cu foils and graphene nanosheets (GNSs) reinforced Cu matrix laminated composites with Cu foil thicknesses of 10 μm and 30 μm were fabricated, and the recrystallization features were thoroughly investigated from microscale to macroscale by means of SEM-EBSD for microstructure observation, neutron and synchrotron radiation for texture analysis and in-situ synchrotron radiation for lattice strain evaluation. The obtained data were analyzed in the frame of crystallography combined with crystal elasticity and surface energy. The results showed that the recrystallization behavior of the Cu foils were greatly affected by the Cu foil thickness and the addition of the GNSs. For the 10 μm thick Cu foils without GNS, they underwent a transition from the cold-rolling texture to a recrystallization texture dominated by RD-rotated Cube and φ_2-rotated Copper components. The transition was screened by both intrinsic microstructural and extrinsic sample geometrical factors. The orientations of the nuclei were mainly inherited from the deformation orientations. Those with low Taylor factors (Cube, Goss and Brass) demonstrated size preference. The post-nucleation growth was affected by the biaxial thermal elastic constraint and surface energy. Due to their opposite effects, the orientations having moderate biaxial moduli and surface energy density (S, Copper, Brass and recrystallization components) survived, resulting in a mixed texture at the completion of recrystallization. The coherent Σ3 boundaries between the new components stabilized their growth through consuming the other oriented crystals separated by random high-angle boundaries. When sintered into bulk, the texture of the Cu was dominated by the orientations of the abnormally grown grains. The effects of GNSs on the recrystallization of Cu foils were also Cu foil thickness dependent. For the 10 μm thick foils, the effect of the GNSs manifested after the samples were sintered to high temperatures (> 700 ℃). Instead of creating much constraint to the expansion of the adjacent Cu foils, the GNSs worked as a barrier preventing the penetration of the grown Cu grains, resulting in the stabilization of the recrystallization texture represented by the two rotated components. For the Cu/GNS composite with Cu foil thickness of 30 μm, the results evidenced that a strong Cube orientation was produced in the Cu/GNS composite instead of the individual non-Cube orientations in the pure Cu stack without GNSs. Detailed strain-state analysis of the Cu foils in the Cu/GNS composite revealed that the anisotropic expansion behavior of the GNS that is incompatible with that of the Cu foils imposed multiple elastic constraints to the foils, resulting in a biaxial isostrain state in the surface layers and a uniaxial compressive strain state in the central layer. The elastic anisotropy of Cu favors the growth of the Cube oriented grains to minimize the total strain energy. The results of the present work provide quantitative and detailed information on recrystallization of thin Cu foils and laminated composite, which contributes to deepening the understanding of recrystallization behaviour of 2D materials. The mechanisms revealed are useful for analysing abnormal grain growth in elastically strained materials and can also be applied to fabrication process for texturization or even monocrystallization.; La recristallisation est le processus des métaux déformés à froid qui se produit lors du traitement thermique. La texture de recristallisation contribue à l'anisotropie des propriétés mécaniques et physiques. Motivés par la minimisation des produits, les matériaux 2D et les composites stratifiés sont de plus en plus demandés pour des applications. Ainsi, à des fins scientifiques et techniques, des recherches sur la recristallisation de tels matériaux sont nécessaires pour comprendre les mécanismes sous-jacents. Dans ce travail, des feuilles de Cu et des composites stratifiés à matrice de Cu renforcé de nanofeuilles de graphène (GNS) avec des épaisseurs de Cu de 10 μm et 30 μm ont été fabriqués. La recristallisation a été étudiée de l'échelle microscopique à l'échelle macroscopique par SEM-EBSD pour l'observation de microstructure, rayonnement neutronique et synchrotron pour l'analyse de texture et rayonnement synchrotron in situ pour l'évaluation de la déformation du réseau. Les données obtenues ont été analysées dans le cadre de la cristallographie combinée à l'élasticité et à l'énergie de surface. Les résultats ont montré que le comportement de recristallisation de Cu était grandement affecté par l'épaisseur de la feuille de Cu et l'ajout des GNSs. Pour les feuilles de Cu de 10 μm sans GNSs, elles ont subi une transition de la texture de laminage à froid à une texture de recristallisation dominée par des composants Cube tourné RD et Copper tourné φ2. La transition a été contrôlée par des facteurs intrinsèques microstructuraux et extrinsèques géométriques d'échantillons. Les orientations des germes sont héritées des orientations de déformation. Ceux avec des facteurs de Taylor faibles (Cube, Goss et Brass) ont montré une préférence de taille. La croissance post-nucléation a été affectée par la contrainte d'élasticité thermique biaxiale et l'énergie de surface. En raison de leurs effets opposés, les orientations ayant des modules biaxiaux et une densité d'énergie de surface modérés (S, Copper, Brass et composants de recristallisation) ont survécu, résultant en une texture mixte à la fin de la recristallisation. Les joints Σ3 cohérents entre les nouvelles composantes ont stabilisé leur croissance en consommant les autres séparés par des joints aléatoires à grand angle. Une fois le Cu fritté en masse, sa texture était dominée par les orientations des grains à croissance anormale. Les effets des GNSs sur la recristallisation des feuilles de Cu dépendaient également de l'épaisseur de la feuille de Cu. Pour les feuilles de 10 μm d'épaisseur, l'effet des GNSs se manifeste après le frittage des échantillons à des températures élevées (> 700 ℃). Au lieu de créer beaucoup de contraintes à l'expansion des feuilles de Cu adjacentes, les GNSs ont fonctionné comme une barrière empêchant la pénétration des grains de Cu développés, entraînant la stabilisation de la texture de recristallisation représentée par les deux composantes tournées. Pour le composite Cu/GNS avec une épaisseur de Cu de 30 μm, les résultats ont montré qu'une forte orientation Cube était produite dans le composite Cu/GNS au lieu des orientations individuelles non Cube dans l'empilement de Cu pur sans GNSs. Une analyse détaillée de l'état de déformation de Cu dans le composite Cu/GNS a révélé que le comportement d'expansion anisotrope du GNS qui est incompatible avec celui de Cu imposait de multiples contraintes élastiques aux feuilles, entraînant un état isocontrainte biaxiale dans la couche en surface et un état de déformation en compression uniaxiale dans la couche centrale. L'anisotropie élastique du Cu favorise la croissance des grains orientés Cube pour minimiser l'énergie totale de déformation. Les résultats du présent travail fournissent des informations quantitatives détaillées sur la recristallisation de feuilles de Cu et de composites stratifiés, ce qui contribue à approfondir la compréhension du comportement de recristallisation des matériaux 2D.