151. PLC-Fusion: Perspective-Based Hierarchical and Deep LiDAR Camera Fusion for 3D Object Detection in Autonomous Vehicles
- Author
-
Husnain Mushtaq, Xiaoheng Deng, Fizza Azhar, Mubashir Ali, and Hafiz Husnain Raza Sherazi
- Subjects
LiDAR-camera fusion ,object perspective sampling ,ViT feature fusion ,3D object detection ,autonomous vehicles ,Information technology ,T58.5-58.64 - Abstract
Accurate 3D object detection is essential for autonomous driving, yet traditional LiDAR models often struggle with sparse point clouds. We propose perspective-aware hierarchical vision transformer-based LiDAR-camera fusion (PLC-Fusion) for 3D object detection to address this. This efficient, multi-modal 3D object detection framework integrates LiDAR and camera data for improved performance. First, our method enhances LiDAR data by projecting them onto a 2D plane, enabling the extraction of object perspective features from a probability map via the Object Perspective Sampling (OPS) module. It incorporates a lightweight perspective detector, consisting of interconnected 2D and monocular 3D sub-networks, to extract image features and generate object perspective proposals by predicting and refining top-scored 3D candidates. Second, it leverages two independent transformers—CamViT for 2D image features and LidViT for 3D point cloud features. These ViT-based representations are fused via the Cross-Fusion module for hierarchical and deep representation learning, improving performance and computational efficiency. These mechanisms enhance the utilization of semantic features in a region of interest (ROI) to obtain more representative point features, leading to a more effective fusion of information from both LiDAR and camera sources. PLC-Fusion outperforms existing methods, achieving a mean average precision (mAP) of 83.52% and 90.37% for 3D and BEV detection, respectively. Moreover, PLC-Fusion maintains a competitive inference time of 0.18 s. Our model addresses computational bottlenecks by eliminating the need for dense BEV searches and global attention mechanisms while improving detection range and precision.
- Published
- 2024
- Full Text
- View/download PDF