180 results on '"Asorey, M"'
Search Results
152. Nahm Transform and Moduli Spaces of CPN-Models on the Torus
- Author
-
Aguado, M., Asorey, M., and Wipf, A.
- Subjects
- *
GAUGE field theory , *TORUS - Abstract
There is a Nahm transform for 2-dimensional gauge fields which establishes a one-to-one correspondence between the orbit space of U(N) gauge fields with topological charge k defined on a torus and that of U(k) gauge fields with charge N on the dual torus. The main result of this paper is to show that a similar duality transform cannot exist for CPN instantons. This fact establishes a significative difference between 4-D gauge theories and CPN models. The result follows from the global analysis of the moduli space of instantons based on a complete and explicit parametrization of all self-dual solutions on the 2-dimensional torus. The boundary of the space of regular instantons is shown to coincide with the space of singular instantons. This identification provides a new approach to analyzing the role of overlapping instantons in the infrared sector of CPN sigma models. [Copyright &y& Elsevier]
- Published
- 2002
- Full Text
- View/download PDF
153. CP Symmetry, Lee-Yang zeros and Phase Transitions.
- Author
-
Aguado, M. and Asorey, M.
- Subjects
- *
QUANTUM chromodynamics , *PHASE transitions , *CP violation , *MATHEMATICAL singularities , *TOPOLOGY , *CHIRALITY of nuclear particles , *GAUGE field theory - Abstract
We analyze the analytic properties of θ-vacuum in QCD and its connection with spontaneous symmetry breaking of CP symmetry. A loss of analyticity in the θ-vacuum energy density can only be due to the accumulation of Lee-Yang zeros at some real values of θ. In the case of first order transitions these singularities are always associated to ∧ cusp singularities and never to ∨ cusps, which in the case θ = 0 are incompatible with the Vafa-Witten diamagnetic inequality This fact provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vector-like gauge theories like QCD. The argument is very similar to that used in the derivation of Bank-Casher formula for chiral symmetry breaking. However, the ∧ behavior does not exclude the existence of a first phase transition at θ = π, where a ∧ cusp singularity is not forbidden by any inequality; in this case the topological charge condensate is proportional to the density of Lee-Yang zeros at θ = π. Moreover, Lee-Yang zeros could give rise to a second order phase transition at θ = 0, which might be very relevant for the interpretation of the anomalous behavior of the topological susceptibility in the CP1 sigma model. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
154. Quantum evolution as a parallel transport.
- Author
-
Asorey, M., Cariñena, J. F., and Paramio, M.
- Published
- 1982
- Full Text
- View/download PDF
155. Some remarks on the classical vacuum structure of gauge field theories.
- Author
-
Asorey, M.
- Published
- 1981
- Full Text
- View/download PDF
156. Chern-Simons theory and BCS superconductivity
- Author
-
Asorey, M., Falceto, F., and Sierra, G.
- Published
- 2002
- Full Text
- View/download PDF
157. On geometry, topology and theta-sectors in a regularized quantum Yang-Mills theory
- Author
-
Asorey, M and Mitter, P K
- Subjects
General Theoretical Physics - Published
- 1982
158. Electromagnetism without monopoles is possible in nontrivial U(1) -fibre bundles.
- Author
-
Asorey, M. and Boya, L. J.
- Published
- 1979
- Full Text
- View/download PDF
159. Composition, distribution and trophic relationships of the fish fauna of the Negro river, Patagonia Argentina,Composición, distribución y relaciones tróficas de la ictiofauna del río Negro, Patagonia Argentina
- Author
-
Alvear, P. A., Rechencq, M., Macchi, P. J., Alonso, M. F., Lippolt, G. E., Denegri, M. A., Navone, G., Eduardo Enrique Zattara, García Asorey, M. I., and Vigliano, P. H.
160. Generalized canonical transformations for time-dependent systems
- Author
-
Asorey, M., Jose F Cariñena, and Ibort, L. A.
161. AIP Conference Proceedings: Preface
- Author
-
Asorey, M., Martínez, E., Jose F Cariñena, and Clemente-Gallardo, J.
162. Vector bundle representations of groups in quantum physics
- Author
-
Asorey, M, primary, Carinena, J F, additional, and Olmo, M A del, additional
- Published
- 1983
- Full Text
- View/download PDF
163. Cohomology of the gauge orbit space and (2+1)-dimensional Yang-Mills theory with the Chern-Simons term
- Author
-
Asorey, M., primary and Mitter, P.K., additional
- Published
- 1985
- Full Text
- View/download PDF
164. Spin and statistics in topologically massive Yang-Mills theories
- Author
-
Asorey, M., primary
- Published
- 1986
- Full Text
- View/download PDF
165. Erratum: Some remarks on the classical vacuum structure of gauge field theories [J. Math. Phys. 22, 179 (1981)].
- Author
-
Asorey, M.
- Published
- 1984
- Full Text
- View/download PDF
166. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
- Author
-
A. Addazi, J. Alvarez-Muniz, R. Alves Batista, G. Amelino-Camelia, V. Antonelli, M. Arzano, M. Asorey, J.-L. Atteia, S. Bahamonde, F. Bajardi, A. Ballesteros, B. Baret, D.M. Barreiros, S. Basilakos, D. Benisty, O. Birnholtz, J.J. Blanco-Pillado, D. Blas, J. Bolmont, D. Boncioli, P. Bosso, G. Calcagni, S. Capozziello, J.M. Carmona, S. Cerci, M. Chernyakova, S. Clesse, J.A.B. Coelho, S.M. Colak, J.L. Cortes, S. Das, V. D’Esposito, M. Demirci, M.G. Di Luca, A. di Matteo, D. Dimitrijevic, G. Djordjevic, D. Dominis Prester, A. Eichhorn, J. Ellis, C. Escamilla-Rivera, G. Fabiano, S.A. Franchino-Viñas, A.M. Frassino, D. Frattulillo, S. Funk, A. Fuster, J. Gamboa, A. Gent, L.Á. Gergely, M. Giammarchi, K. Giesel, J.-F. Glicenstein, J. Gracia-Bondía, R. Gracia-Ruiz, G. Gubitosi, E.I. Guendelman, I. Gutierrez-Sagredo, L. Haegel, S. Heefer, A. Held, F.J. Herranz, T. Hinderer, J.I. Illana, A. Ioannisian, P. Jetzer, F.R. Joaquim, K.-H. Kampert, A. Karasu Uysal, T. Katori, N. Kazarian, D. Kerszberg, J. Kowalski-Glikman, S. Kuroyanagi, C. Lämmerzahl, J. Levi Said, S. Liberati, E. Lim, I.P. Lobo, M. López-Moya, G.G. Luciano, M. Manganaro, A. Marcianò, P. Martín-Moruno, Manel Martinez, Mario Martinez, H. Martínez-Huerta, P. Martínez-Miravé, M. Masip, D. Mattingly, N. Mavromatos, A. Mazumdar, F. Méndez, F. Mercati, S. Micanovic, J. Mielczarek, A.L. Miller, M. Milosevic, D. Minic, L. Miramonti, V.A. Mitsou, P. Moniz, S. Mukherjee, G. Nardini, S. Navas, M. Niechciol, A.B. Nielsen, N.A. Obers, F. Oikonomou, D. Oriti, C.F. Paganini, S. Palomares-Ruiz, R. Pasechnik, V. Pasic, C. Pérez de los Heros, C. Pfeifer, M. Pieroni, T. Piran, A. Platania, S. Rastgoo, J.J. Relancio, M.A. Reyes, A. Ricciardone, M. Risse, M.D. Rodriguez Frias, G. Rosati, D. Rubiera-Garcia, H. Sahlmann, M. Sakellariadou, F. Salamida, E.N. Saridakis, P. Satunin, M. Schiffer, F. Schüssler, G. Sigl, J. Sitarek, J. Solà Peracaula, C.F. Sopuerta, T.P. Sotiriou, M. Spurio, D. Staicova, N. Stergioulas, S. Stoica, J. Strišković, T. Stuttard, D. Sunar Cerci, Y. Tavakoli, C.A. Ternes, T. Terzić, T. Thiemann, P. Tinyakov, M.D.C. Torri, M. Tórtola, C. Trimarelli, T. Trześniewski, A. Tureanu, F.R. Urban, E.C. Vagenas, D. Vernieri, V. Vitagliano, J.-C. Wallet, J.D. Zornoza, Addazi, A., Alvarez-Muniz, J., Alves Batista, R., Amelino-Camelia, G., Antonelli, V., Arzano, M., Asorey, M., Atteia, J. -L., Bahamonde, S., Bajardi, F., Ballesteros, A., Baret, B., Barreiros, D. M., Basilakos, S., Benisty, D., Birnholtz, O., Blanco-Pillado, J. J., Blas, D., Bolmont, J., Boncioli, D., Bosso, P., Calcagni, G., Capozziello, S., Carmona, J. M., Cerci, S., Chernyakova, M., Clesse, S., Coelho, J. A. B., Colak, S. M., Cortes, J. L., Das, S., D'Esposito, V., Demirci, M., Di Luca, M. G., di Matteo, A., Dimitrijevic, D., Djordjevic, G., Prester, D. D., Eichhorn, A., Ellis, J., Escamilla-Rivera, C., Fabiano, G., Franchino-Vinas, S. A., Frassino, A. M., Frattulillo, D., Funk, S., Fuster, A., Gamboa, J., Gent, A., Gergely, L. A., Giammarchi, M., Giesel, K., Glicenstein, J. -F., Gracia-Bondia, J., Gracia-Ruiz, R., Gubitosi, G., Guendelman, E. I., Gutierrez-Sagredo, I., Haegel, L., Heefer, S., Held, A., Herranz, F. J., Hinderer, T., Illana, J. I., Ioannisian, A., Jetzer, P., Joaquim, F. R., Kampert, K. -H., Uysal, A. K., Katori, T., Kazarian, N., Kerszberg, D., Kowalski-Glikman, J., Kuroyanagi, S., Lammerzahl, C., Said, J. L., Liberati, S., Lim, E., Lobo, I. P., Lopez-Moya, M., Luciano, G. G., Manganaro, M., Marciano, A., Martin-Moruno, P., Martinez, M., Martinez-Huerta, H., Martinez-Mirave, P., Masip, M., Mattingly, D., Mavromatos, N., Mazumdar, A., Mendez, F., Mercati, F., Micanovic, S., Mielczarek, J., Miller, A. L., Milosevic, M., Minic, D., Miramonti, L., Mitsou, V. A., Moniz, P., Mukherjee, S., Nardini, G., Navas, S., Niechciol, M., Nielsen, A. B., Obers, N. A., Oikonomou, F., Oriti, D., Paganini, C. F., Palomares-Ruiz, S., Pasechnik, R., Pasic, V., Perez de los Heros, C., Pfeifer, C., Pieroni, M., Piran, T., Platania, A., Rastgoo, S., Relancio, J. J., Reyes, M. A., Ricciardone, A., Risse, M., Frias, M. D. R., Rosati, G., Rubiera-Garcia, D., Sahlmann, H., Sakellariadou, M., Salamida, F., Saridakis, E. N., Satunin, P., Schiffer, M., Schussler, F., Sigl, G., Sitarek, J., Peracaula, J. S., Sopuerta, C. F., Sotiriou, T. P., Spurio, M., Staicova, D., Stergioulas, N., Stoica, S., Striskovic, J., Stuttard, T., Cerci, D. S., Tavakoli, Y., Ternes, C. A., Terzic, T., Thiemann, T., Tinyakov, P., Torri, M. D. C., Tortola, M., Trimarelli, C., Trzesniewski, T., Tureanu, A., Urban, F. R., Vagenas, E. C., Vernieri, D., Vitagliano, V., Wallet, J. -C., Zornoza, J. D., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), A. Addazi, J. Alvarez-Muniz, R. Alves Batista, G. Amelino-Camelia, V. Antonelli, M. Arzano, M. Asorey, J.-L. Atteia, S. Bahamonde, F. Bajardi, A. Ballestero, B. Baret, D.M. Barreiro, S. Basilako, D. Benisty, O. Birnholtz, J.J. Blanco-Pillado, D. Bla, J. Bolmont, D. Boncioli, P. Bosso, G. Calcagni, S. Capozziello, J.M. Carmona, S. Cerci, M. Chernyakov, S. Clesse, J.A.B. Coelho, S.M. Colak, J.L. Corte, S. Da, V. D???Esposito, M. Demirci, M.G. Di Luca, A. di Matteo, D. Dimitrijevic, G. Djordjevic, D. Dominis Prester, A. Eichhorn, J. Elli, C. Escamilla-Rivera, G. Fabiano, S.A. Franchino-Vi??a, A.M. Frassino, D. Frattulillo, S. Funk, A. Fuster, J. Gamboa, A. Gent, L.??. Gergely, M. Giammarchi, K. Giesel, J.-F. Glicenstein, J. Gracia-Bond??a, R. Gracia-Ruiz, G. Gubitosi, E.I. Guendelman, I. Gutierrez-Sagredo, L. Haegel, S. Heefer, A. Held, F.J. Herranz, T. Hinderer, J.I. Illana, A. Ioannisian, P. Jetzer, F.R. Joaquim, K.-H. Kampert, A. Karasu Uysal, T. Katori, N. Kazarian, D. Kerszberg, J. Kowalski-Glikman, S. Kuroyanagi, C. L??mmerzahl, J. Levi Said, S. Liberati, E. Lim, I.P. Lobo, M. L??pez-Moya, G.G. Luciano, M. Manganaro, A. Marcian??, P. Mart??n-Moruno, Manel Martinez, Mario Martinez, H. Mart??nez-Huerta, P. Mart??nez-Mirav??, M. Masip, D. Mattingly, N. Mavromato, A. Mazumdar, F. M??ndez, F. Mercati, S. Micanovic, J. Mielczarek, A.L. Miller, M. Milosevic, D. Minic, L. Miramonti, V.A. Mitsou, P. Moniz, S. Mukherjee, G. Nardini, S. Nava, M. Niechciol, A.B. Nielsen, N.A. Ober, F. Oikonomou, D. Oriti, C.F. Paganini, S. Palomares-Ruiz, R. Pasechnik, V. Pasic, C. P??rez de los Hero, C. Pfeifer, M. Pieroni, T. Piran, A. Platania, S. Rastgoo, J.J. Relancio, M.A. Reye, A. Ricciardone, M. Risse, M.D. Rodriguez Fria, G. Rosati, D. Rubiera-Garcia, H. Sahlmann, M. Sakellariadou, F. Salamida, E.N. Saridaki, P. Satunin, M. Schiffer, F. Sch??ssler, G. Sigl, J. Sitarek, J. Sol?? Peracaula, C.F. Sopuerta, T.P. Sotiriou, M. Spurio, D. Staicova, N. Stergioula, S. Stoica, J. Stri??kovi??, T. Stuttard, D. Sunar Cerci, Y. Tavakoli, C.A. Terne, T. Terzi??, T. Thiemann, P. Tinyakov, M.D.C. Torri, M. T??rtola, C. Trimarelli, T. Trze??niewski, A. Tureanu, F.R. Urban, E.C. Vagena, D. Vernieri, V. Vitagliano, J.-C. Wallet, J.D. Zornoza, Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Generalitat de Catalunya, European Commission, Xunta de Galicia, Ministerio de Economía y Competitividad (España), European Research Council, Eusko Jaurlaritza, Generalitat Valenciana, Japan Society for the Promotion of Science, and Comunidad de Madrid
- Subjects
High Energy Physics - Theory ,CAUSAL DYNAMICAL TRIANGULATIONS ,Ultra-high-energy cosmic rays ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Lorentz invariance violation and deformation ,Gamma-ray astronomy ,Cosmic neutrinos ,Gravitational waves ,General Relativity and Quantum Cosmology ,Lorentz transformations ,Gravitational waves -- Detection ,High Energy Physics - Phenomenology (hep-ph) ,Astronomi, astrofysik och kosmologi ,Gamma ray astronomy ,Astronomy, Astrophysics and Cosmology ,Cosmic neutrino ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,General Relativity and Cosmology ,hep-th ,hep-ph ,Quantum cosmology ,ENERGY COSMIC-RAYS ,High Energy Physics - Phenomenology ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Neutrinos -- Scattering ,Astrophysics - High Energy Astrophysical Phenomena ,Particle Physics - Theory ,Gravitational wave ,ACTIVE GALACTIC NUCLEI ,Astrophysics and Astronomy ,Nuclear and High Energy Physics ,[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,gr-qc ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,GAMMA-RAY BURST ,DOUBLY-SPECIAL RELATIVITY ,Ultra-high-energy cosmic ray ,Particle Physics - Phenomenology ,PRIMORDIAL BLACK-HOLES ,Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP] ,COHERENT STATES GCS ,Quantum gravity ,GENERALIZED UNCERTAINTY PRINCIPLE ,EXTRAGALACTIC BACKGROUND LIGHT ,High Energy Physics - Theory (hep-th) ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,LORENTZ INVARIANCE VIOLATION - Abstract
The exploration of the universe has recently entered a new era thanks to the multimessenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 ‘‘Quantum gravity phenomenology in the multi-messenger approach", is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers., Talent Scientific Research Program of College of Physics, Sichuan University 1082204112427, Fostering Program in Disciplines Possessing Novel Features for Natural Science of Sichuan University 2020SCUNL209, 1000 Talent program of Sichuan province 2021, Xunta de Galicia, European Commission European Union ERDF, "Maria de Maeztu'' Units of Excellence program MDM-2016-0692, Red Tematica Nacional de Astroparticulas RED2018-102661-T, La Caixa Foundation 100010434, European Commission 847648 LCF/BQ/PI21/11830030 754510, Ministry of Education, Science & Technological Development, Serbia 451-03-9/2021-14/200124, FSR Incoming Postdoctoral Fellowship Ministry of Education, Science and Technological Development, Serbia 451-03-9/2021-14/200124, University of Rijeka grant uniri-prirod-18-48, Croatian Science Foundation (HRZZ) IP-2016-06-9782, Villum Fonden 29405 DGA-FSE 2020-E2117R, European Regional Development Fund through the Center of Excellence (TK133) "The Dark Side of the Universe'' European Regional Development Fund (ESIF/ERDF), Ministry of Education, Youth & Sports - Czech Republic CoGraDS-CZ.02.1.01/0.0/0.0/15 003/0000437, Blavatnik grant, Basque Government IT-97916 Basque Foundation for Science (IKERBASQUE), European Space Agency C4000120711 4000132310, FNRS (Belgian Fund for Research), Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT), Universidad Nacional Autonoma de Mexico TA100122, National University of La Plata X909 DICYT 042131GR, National Research, Development & Innovation Office (NRDIO) - Hungary 123996, FQXi, Swiss National Science Foundation (SNSF), European Commission 181461 199307, Netherlands Organization for Scientific Research (NWO) 680-91-119 15MV71, Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (KAKENHI) 20H01899 20H05853 JP21F21789, Estonian Research Council PRG356, Julian Schwinger Foundation, Generalitat Valenciana Excellence PROMETEO-II/2017/033 PROMETEO/2018/165, Istituto Nazionale di Fisica Nucleare (INFN), European ITN project HIDDeN H2020-MSCA-ITN-2019//860881-HIDDeN, Swedish Research Council, European Commission 2016-05996 European Research Council (ERC) European Commission 668679, Advanced ERC grant TReX, Ministry of Education, Universities and Research (MIUR) 2017X7X85K, Fonds de la Recherche Scientifique - FNRS 4.4501.18, Ministry of Research, Innovation and Digitization - Romania PN19-030102-INCDFM PN-III-P4ID-PCE-2020-2374, United States Department of Energy (DOE) DE-SC0020262, Ministry of Science, ICT & Future Planning, Republic of Korea 075-15-2020-778, German Academic Scholarship Foundation German Research Foundation (DFG) 408049454 420243324 425333893 445990517 Germany's Excellence Strategy (EXC 2121 "Quantum Universe'') 390833306 390837967 Federal Ministry of Education & Research (BMBF) 05 A20GU2 05 A20PX1, Centro de Excelencia "Severo Ochoa'' SEV-2016-0588, CERCA program of the Generalitat de Catalunya, Agencia de Gestio D'Ajuts Universitaris de Recerca Agaur (AGAUR) Generalitat de Catalunya 2017-SGR-1469 2017-SGR-929 ICCUB CEX2019-000918-M, National Science Centre, Poland 2019/33/B/ST2/00050 2017/27/B/ST2/01902, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 306414/2020-1, Dicyt-USACH 041931MF, National Science Fund of Bulgaria KP-06-N 38/11 RCN ROMFORSK 302640, Comunidad de Madrid 2018-T1/TIC-10431 2019-T1/TIC-13177 S2018/NMT-4291, UK Research & Innovation (UKRI), Science & Technology Facilities Council (STFC) ST/T000759/1 ST/P000258/1 ST/T000732/1 ST/V005596/1, Portuguese Foundation for Science and Technology UIDB/00618/2020 UIDB/00777/2020 UIDP/00777/2020 CERN/FIS-PAR/0004/2019 PTDC/FIS-PAR/29436/2017 PTDC/FISPAR/31938/2017 PTDC/FIS-OUT/29048/2017 SFRH/BD/137127/2018, Centre National de la Recherche Scientifique (CNRS), LabEx UnivEarthS ANR-10-LABX-0023 ANR18-IDEX-0001, Junta de Andalucia European Commission A-FQM-053-UGR18, Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN-2021-03644, National Science Centre Poland Sonata Bis 2019/33/B/ST2/00050 DEC-2017/26/E/ST2/00763, Natural Sciences and Engineering Research Council of Canada (NSERC) DGIID-DGA 2015-E24/2, Spanish Research State Agency and Ministerio de Ciencia e Innovacion MCIN/AEI PID2019-104114RB-C32 PID2019-105544GB-I00 PID2019-105614GB-C21 PID2019106515GB-I00 PID2019-106802GB-I00 PID2019-107394GB-I00 PID2019-107844GB-C21 PID2019-107847RB-C41 MCIN/AEI PGC2018-095328-B-I00 PGC2018-094856-B-I00 PGC2018-096663-B-C41 PGC2018-096663-B-C44 PGC2018-094626-BC21 PGC2018-101858-B-I00 FPA2017-84543-P FPA2016-76005-C2-1-P, Spanish 'Ministerio de Universidades' BG20/00228 Spanish Government PID2020-115845GBI00 Generalitat de Catalunya Comunidad de Madrid S2018/NMT-4291 Spanish Government PID2019-105544GB-I00, Perimeter Institute for Theoretical Physics, Government of Canada through the Department of Innovation, Science and Economic Development, Province of Ontario through the Ministry of Colleges and Universities, Centre National de la Recherche Scientifique (CNRS), Netherlands Organization for Scientific Research (NWO), Fundamental Questions Institute (FQXi), European Cooperation in Science and Technology (COST) CA18108, Research Council of University of Guilan, Iniziativa Specifica TEONGRAV Iniziativa Specifica QGSKY Iniziativa Specifica QUAGRAP Iniziativa Specifica GeoSymQFT, the Spanish Research State Agency and Ministerio de Ciencia e Innovacion MCIN/AEI PID2020-115845GBI00 PID2019-108485GB-I00 PID2020-113334GB-I00 PID2020-113701GB-I00 PID2020-113775GB-I00 PID2020-118159GB-C41 PID2020-118159GA-C42 PRE2019-089024, Rothchild grant UID/MAT/00212/2020 FPU18/04571
- Published
- 2022
- Full Text
- View/download PDF
167. CP Symmetry, Lee-Yang zeros and Phase Transitions
- Author
-
Asorey, M [Departamento. de Fisica Teorica. Facultad de Ciencias, Universidad de Zaragoza. E-50009 Zaragoza (Spain)]
- Published
- 2011
- Full Text
- View/download PDF
168. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review.
- Author
-
Addazi, A., Alvarez-Muniz, J., Alves Batista, R., Amelino-Camelia, G., Antonelli, V., Arzano, M., Asorey, M., Atteia, J.-L., Bahamonde, S., Bajardi, F., Ballesteros, A., Baret, B., Barreiros, D.M., Basilakos, S., Benisty, D., Birnholtz, O., Blanco-Pillado, J.J., Blas, D., Bolmont, J., and Boncioli, D.
- Subjects
- *
QUANTUM gravity , *GRAVITATIONAL waves , *QUANTUM theory , *COSMIC rays , *ULTRA-high energy cosmic rays , *NEUTRINOS , *INTERSTELLAR medium , *NEUTRINO detectors - Abstract
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach", is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
169. Vafa-Witten theorem and Lee-Yang singularities
- Author
-
Asorey, M [Departamento de Fisica Teorica, Facultad de Ciencias Universidad de Zaragoza, 50009 Zaragoza (Spain)]
- Published
- 2009
- Full Text
- View/download PDF
170. Localization of observables in the Rindler wedge
- Author
-
Manuel Asorey, A. P. Balachandran, A. R. de Queiroz, G. Marmo, Asorey, M., Balachandran, A. P., Marmo, G., and de Queiroz, A. R.
- Subjects
Physics ,Photon ,010308 nuclear & particles physics ,Black hole information paradox ,Lorentz transformation ,Observable ,Physics::Classical Physics ,01 natural sciences ,Wedge (geometry) ,Charged particle ,Lorentz group ,General Relativity and Quantum Cosmology ,symbols.namesake ,Classical mechanics ,0103 physical sciences ,symbols ,Coherent states ,010306 general physics - Abstract
One of the striking features of QED is that charged particles create a coherent cloud of photons. The resultant coherent state vectors of photons generate a nontrivial representation of the localized algebra of observables that do not support a representation of the Lorentz group: Lorentz symmetry is spontaneously broken. We show in particular that Lorentz boost generators diverge in this representation, a result shown also by Balachandran et al. [Eur. Phys. J. C 75, 89 (2015)EPCFFB1434-604410.1140/epjc/s10052-015-3305-0] (see also the work by Balachandran et al. [Mod. Phys. Lett. A 28, 1350028 (2013)MPLAEQ0217-732310.1142/S0217732313500284]. Localization of observables, for example in the Rindler wedge, uses Poincaré invariance in an essential way [Int. J. Geom. Methods Mod. Phys. 14, 1740008 (2017).0219-887810.1142/S0219887817400084]. Hence, in the presence of charged fields, the photon observables cannot be localized in the Rindler wedge. These observations may have a bearing on the black hole information loss paradox, as the physics in the exterior of the black hole has points of resemblance to that in the Rindler wedge.
- Published
- 2018
171. Entangled scent of a charge
- Author
-
Fedele Lizzi, Manuel Asorey, A. P. Balachandran, Giuseppe Marmo, Asorey, M., Balachandran, A. P., Lizzi, F., and Marmo, G.
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Photon ,Space-Time Symmetrie ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Quantum mechanics ,0103 physical sciences ,Classical electromagnetism ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Quantum field theory ,Anomalies in Field and String Theories ,010306 general physics ,Quantum ,Mathematical Physics ,Physics ,Spacetime ,010308 nuclear & particles physics ,Space-Time Symmetries ,Charge (physics) ,Mathematical Physics (math-ph) ,Charged particle ,Nonperturbative Effects ,High Energy Physics - Theory (hep-th) ,Gauge Symmetry ,Nonperturbative Effect ,lcsh:QC770-798 ,Anomalies in Field and String Theorie ,Ground state - Abstract
We argue that the ground state of a field theory, in the presence of charged particles, becomes an entangled state involving an infinity of soft photons. The quantum field vacuum is altered by the passage of a uniformly moving charge, leaving in its wake a different dressed ground state. In this sense a charged particle leaves its electromagnetic scent even after passing by. Unlike in classical electrodynamics the effect of the charge remains even at infinite time. The calculation is done in detail for the ground state of a spacetime wedge, although the results are more general. This agrees in spirit with recent results over the infrared aspects of field theory, although the technical details are different. These considerations open the possibility that the information carried by quantum fields, being nonlocal, does not disappear beyond the horizon of black holes., Comment: 10 pages. Minor corrections and added references
- Published
- 2018
172. Covariant Jacobi Brackets for Test Particles
- Author
-
Alberto Ibort, F. Di Cosmo, G. Marmo, Manuel Asorey, Florio M. Ciaglia, Asorey, M., Ciaglia, F. M., Di Cosmo, F., Ibort, A., and Marmo, G.
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,General Physics and Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Observable ,Mathematical Physics (math-ph) ,Invariant (physics) ,Poisson distribution ,01 natural sciences ,symbols.namesake ,Poincaré group ,0103 physical sciences ,symbols ,Covariant transformation ,010306 general physics ,Mathematical Physics ,Mathematical physics - Abstract
We show that the space of observables of test particles carries a natural Jacobi structure which is manifestly invariant under the action of the Poincar\'{e} group. Poisson algebras may be obtained by imposing further requirements. A generalization of Peierls procedure is used to extend this Jacobi bracket on the space of time-like geodesics on Minkowski space-time., Comment: 13 pages Submitted to MPLA
- Published
- 2017
173. Equations of motion as constraints: superselection rules, Ward identities
- Author
-
Giuseppe Marmo, A. P. Balachandran, Fedele Lizzi, Manuel Asorey, Asorey, M., Balachandran, A. P., Lizzi, Fedele, and Marmo, Giuseppe
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Lorentz transformation ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Lorentz covariance ,01 natural sciences ,General Relativity and Quantum Cosmology ,Theoretical physics ,symbols.namesake ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Gauge theory ,010306 general physics ,Physics ,Superselection ,Spacetime ,010308 nuclear & particles physics ,Group (mathematics) ,Space-Time Symmetries ,Vanish at infinity ,Nonperturbative Effects ,High Energy Physics - Theory (hep-th) ,Gauge Symmetry ,symbols ,lcsh:QC770-798 ,Quantum gravity - Abstract
The meaning of local observables is poorly understood in gauge theories, not to speak of quantum gravity. As a step towards a better understanding we study asymptotic (infrared) transformation in local quantum physics. Our observables are smeared by test functions, at first vanishing at infinity. In this context we show that the equations of motion can be seen as constraints, which generate a group, the group of space and time dependent gauge transformations.This is one of the main points of the paper. Infrared nontrivial effects are captured allowing test functions which do not vanish at infinity. These extended operators generate a larger group. The quotient of the two groups generate superselection sectors, which differentiate different infrared sectors. The BMS group changes the superselection sector, a result long known for its Lorentz subgroup. It is hence spontaneously broken. Ward identities implied by the gauge invariance of the S-matrix generalize the standard results and lead to charge conservation and low energy theorems. Their validity does not require Lorentz invariance., Comment: 21 pages, 1 reference added and typos corrected
- Published
- 2017
174. Casimir effect across a layered medium
- Author
-
M.S. Tomaš and M. Asorey, M. Bordag, E. Elizalde
- Subjects
Physics ,Quantum Physics ,Recursion (computer science) ,FOS: Physical sciences ,Fresnel coefficients ,nonstandard recursion ,Casimir effect ,Fresnel equations ,01 natural sciences ,010309 optics ,Classical mechanics ,Planar ,Stack (abstract data type) ,Simple (abstract algebra) ,0103 physical sciences ,Slab ,010306 general physics ,Quantum Physics (quant-ph) - Abstract
Using nonstandard recursion relations for Fresnel coefficients involving successive stacks of layers, we extend the Lifshitz formula to configurations with an inhomogeneous, n-layered, medium separating two planar objects. The force on each object is the sum of a Lifshitz like force and a force arising from the inhomogeneity of the medium. The theory correctly reproduces very recently obtained results for the Casimir force/energy in some simple systems of this kind. As a by product, we obtain a formula for the force on an (unspecified) stack of layers between two planar objects which generalizes our previous result for the force on a slab in a planar cavity., Comment: 5 pages, 1 figure, presented at QFEXT11
- Published
- 2012
175. Quaternionic versus complex maps
- Author
-
L. Solombrino, Manuel Asorey, G. Scolarici, Asorey, M, Scolarici, G, and Solombrino, Luigi
- Subjects
History ,Bell state ,Formalism (philosophy of mathematics) ,Quaternionic representation ,Qubit ,Mathematical analysis ,Quantum Physics ,Unitary state ,Computer Science Applications ,Education ,Mathematics ,Mathematical physics - Abstract
We discuss the relation between completely positive quaternionic maps and the corresponding complex maps obtained via projection operation. In order to illustrate this formalism, we reobtain the (complex) qubit subdynamics of maximally entangled Bell states, as complex projection of unitary dynamics between quaternionic pure states.
- Published
- 2007
176. Isoperiodic classical systems and their quantum counterparts
- Author
-
G. Marmo, Manuel Asorey, A. Perelomov, José F. Cariñena, Asorey, M, Carinena, Jf, Marmo, Giuseppe, and Perelomov, A.
- Subjects
High Energy Physics - Theory ,Physics ,Isospectral ,High Energy Physics - Theory (hep-th) ,General Physics and Astronomy ,Semiclassical physics ,Energy level ,FOS: Physical sciences ,Anomaly (physics) ,Real line ,Quantum ,Spectral line ,Mathematical physics - Abstract
One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O(h^2) because semiclassical corrections of energy levels of order O(h) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems., Comment: 29 pages, 8 eps figures
- Published
- 2007
- Full Text
- View/download PDF
177. Global Theory of Quantum Boundary Conditions and Topology Change
- Author
-
Giuseppe Marmo, Manuel Asorey, Alberto Ibort, Asorey, M, Ibort, A, and Marmo, Giuseppe
- Subjects
Physics ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,Quantum Physics ,Hilbert space ,FOS: Physical sciences ,Boundary (topology) ,Astronomy and Astrophysics ,Cayley transform ,General Relativity and Quantum Cosmology (gr-qc) ,Riemannian manifold ,Submanifold ,Space (mathematics) ,Topology ,Atomic and Molecular Physics, and Optics ,Manifold ,General Relativity and Quantum Cosmology ,symbols.namesake ,High Energy Physics - Theory (hep-th) ,symbols ,Configuration space ,Quantum Physics (quant-ph) - Abstract
We analyze the global theory of boundary conditions for a constrained quantum system with classical configuration space a compact Riemannian manifold $M$ with regular boundary $\Gamma=\partial M$. The space $\CM$ of self-adjoint extensions of the covariant Laplacian on $M$ is shown to have interesting geometrical and topological properties which are related to the different topological closures of $M$. In this sense, the change of topology of $M$ is connected with the non-trivial structure of $\CM$. The space $\CM$ itself can be identified with the unitary group $\CU(L^2(\Gamma,\C^N))$ of the Hilbert space of boundary data $L^2(\Gamma,\C^N)$. A particularly interesting family of boundary conditions, identified as the set of unitary operators which are singular under the Cayley transform, $\CC_-\cap \CC_+$ (the Cayley manifold), turns out to play a relevant role in topology change phenomena. The singularity of the Cayley transform implies that some energy levels, usually associated with edge states, acquire an infinity energy when by an adiabatic change the boundary condition reaches the Cayley submanifold $\CC_-$. In this sense topological transitions require an infinite amount of quantum energy to occur, although the description of the topological transition in the space $\CM$ is smooth. This fact has relevant implications in string theory for possible scenarios with joint descriptions of open and closed strings. In the particular case of elliptic self--adjoint boundary conditions, the space $\CC_-$ can be identified with a Lagrangian submanifold of the infinite dimensional Grassmannian. The corresponding Cayley manifold $\CC_-$ is dual of the Maslov class of $\CM$., Comment: 29 pages, 2 figures, harvmac
- Published
- 2004
178. VACUUM SUPERCONDUCTIVITY, CONVENTIONAL SUPERCONDUCTIVITY AND SCHWINGER PAIR PRODUCTION
- Author
-
M. N. Chernodub, Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours-Centre National de la Recherche Scientifique (CNRS), M. Asorey, M. Bordag and E. Elizalde, and Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Superconductivity ,Nuclear and High Energy Physics ,Phase transition ,Vacuum state ,FOS: Physical sciences ,01 natural sciences ,Superconductivity (cond-mat.supr-con) ,Superfluidity ,High Energy Physics - Phenomenology (hep-ph) ,Vacuum energy ,Condensed Matter::Superconductivity ,Magnetic Field ,0103 physical sciences ,Quantum Chromodynamics ,010306 general physics ,Physics ,Condensed matter physics ,010308 nuclear & particles physics ,Condensed Matter - Superconductivity ,Astronomy and Astrophysics ,Quantum number ,Atomic and Molecular Physics, and Optics ,Magnetic field ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,High Energy Physics - Phenomenology ,Pair production ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Ground state - Abstract
In a background of a very strong magnetic field a quantum vacuum may turn into a new phase characterized by anisotropic electromagnetic superconductivity. The phase transition should take place at a critical magnetic field of the hadronic strength (B_c \approx 10^{16} Tesla or eB_c \approx 0.6 GeV^2). The transition occurs due to an interplay between electromagnetic and strong interactions: virtual quark-antiquark pairs popup from the vacuum and create -- due to the presence of the intense magnetic field -- electrically charged and electrically neutral spin-one condensates with quantum numbers of \rho mesons. The ground state of the new phase is a complicated honeycomblike superposition of superconductor and superfluid vortex lattices surrounded by overlapping charged and neutral condensates. In this talk we discuss similarities and differences between the superconducting state of vacuum and conventional superconductivity, and between the magnetic-field-induced vacuum superconductivity and electric-field-induced Schwinger pair production., Comment: 15 pages, 6 figures, 6 tables; plenary talk at Quantum Field Theory Under the Influence of External Conditions 2011 (QFEXT11), Benasque, Spain, September 18-24, 2011
- Published
- 2012
- Full Text
- View/download PDF
179. Consistency of the regularization of gauge theories by high covariant derivatives.
- Author
-
Asorey M and Falceto F
- Published
- 1996
- Full Text
- View/download PDF
180. Vacuum Nodes in QCD at theta = pi : Exact Results.
- Author
-
Asorey M and Falceto F
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.