151. Genome-centric metagenomics reveals the host-driven dynamics and ecological role of CPR bacteria in an activated sludge system.
- Author
-
Wang, Yulin, Zhang, Yulin, Hu, Yu, Liu, Lei, Liu, Shuang-Jiang, and Zhang, Tong
- Subjects
ECOSYSTEM dynamics ,HORIZONTAL gene transfer ,GENOMICS ,BACTERIAL evolution ,BIOGEOCHEMICAL cycles ,METAGENOMICS ,BACTERIA - Abstract
Background: Candidate phyla radiation (CPR) constitutes highly diverse bacteria with small cell sizes and are likely obligate intracellular symbionts. Given their distribution and complex associations with bacterial hosts, genetic and biological features of CPR bacteria in low-nutrient environments have received increasing attention. However, CPR bacteria in wastewater treatment systems remain poorly understood. We utilized genome-centric metagenomics to answer how CPR communities shift over 11 years and what kind of ecological roles they act in an activated sludge system. Results: We found that approximately 9% (135) of the 1,526 non-redundant bacterial and archaeal metagenome-assembled genomes were affiliated with CPR. CPR bacteria were consistently abundant with a relative abundance of up to 7.5% in the studied activated sludge system. The observed striking fluctuations in CPR community compositions and the limited metabolic and biosynthetic capabilities in CPR bacteria collectively revealed the nature that CPR dynamics may be directly determined by the available hosts. Similarity-based network analysis further confirmed the broad bacterial hosts of CPR lineages. The proteome contents of activated sludge-associated CPR had a higher similarity to those of environmental-associated CPR than to those of human-associated ones. Comparative genomic analysis observed significant enrichment of genes for oxygen stress resistance in activated sludge-associated CPR bacteria. Furthermore, genes for carbon cycling and horizontal gene transfer were extensively identified in activated sludge-associated CPR genomes. Conclusions: These findings highlight the presence of specific host interactions among CPR lineages in activated sludge systems. Despite the lack of key metabolic pathways, these small, yet abundant bacteria may have significant involvements in biogeochemical cycling and bacterial evolution in activated sludge systems. A1iT8gFKWRifc6GWDf3ih6 Video Abstract [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF