151. Benchmarking the effective one-component plasma model for warm dense neon and krypton within quantum molecular dynamics simulation.
- Author
-
Wang ZQ, Tang J, Hou Y, Chen QF, Chen XR, Dai JY, Meng XJ, Gu YJ, Liu L, Li GJ, Lan YS, and Li ZG
- Abstract
The effective one-component plasma (EOCP) model has provided an efficient approach to obtaining many important thermophysical parameters of hot dense matter [J. Clérouin, et al., Phys. Rev. Lett. 116, 115003 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.115003]. In this paper, we perform extensive quantum molecular dynamics (QMD) simulations to determine the equations of state, ionic structures, and ionic transport properties of neon and krypton within the warm dense matter (WDM) regime where the density (ρ) is up to 12 g/cm^{3} and the temperature (T) is up to 100 kK. The simulated data are then used as a benchmark to explicitly evaluate the EOCP and Yukawa models. It is found that, within present ρ-T regime, the EOCP model can excellently reproduce the diffusion and viscosity coefficients of neon and krypton due to the fact that this model defines a system which nearly reproduces the actual physical states of WDM. Therefore, the EOCP model may be a promising alternative approach to reasonably predicting the transport behaviors of matter in WDM regime at lower QMD computational cost. The evaluation of Yukawa model shows that the consideration of the energy level broadening effect in the average atom model is necessary. Finally, with the help of EOCP model, the Stokes-Einstein relationships about neon and krypton are discussed, and fruitful plasma parameters as well as a practical ρ-T-dependent formula of the effective coupling parameter are obtained. These results not only provide valuable information for future theoretical and experimental studies on dense neon and krypton but also reveal the applicability of the EOCP model and the limitation of the Yukawa model in WDM regime and further support the continuing search for a unified description of ionic transport in dense plasma.
- Published
- 2020
- Full Text
- View/download PDF