Rob Fender, I. G. Martínez-Pais, Benjamin L. Schulz, H. Matsuo, Gavin Ramsay, Alberto Salama, Jorge Casares, O. C. de Jager, M. Mouchet, D. de Martino, M. Abada-Simon, Simon Garrington, A. Evans, S. P. S. Eyres, Guy G. Pooley, N. Kuno, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Unit for Space Physics, North-West University, South-Africa, Unit for Space Physics, North-West University, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Cavendish Laboratory, University of Cambridge [UK] (CAM), High Energy Astrophys. & Astropart. Phys (API, FNWI), North-West University [Potchefstroom] (NWU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
We have used ISO to observe the Magnetic Cataclysmic Variable AE Aquarii in the previously unexplored range from 4.8 $\mu$m up to 170 $\mu$m in the framework of a coordinated multi-wavelength campaign from the radio to optical wavelengths. We have obtained for the first time a spectrum between 4.8 and 7.3 $\mu$m with ISOCAM and ISOPHOT-P: the major contribution comes from the secondary star spectrum, with some thermal emission from the accretion stream, and possibly some additional cyclotron radiation from the post-shock accretion material close to the magnetised white dwarf. Having reprocessed ISOPHOT-C data, we confirm AE Aqr detection at $90~\mu$m and we have re-estimated its upper limit at 170 $\mu$m. In addition, having re-processed IRAS data, we have detected AE Aqr at 60 $\mu$m and we have estimated its upper limits at 12, 25, and 100 $\mu$m. The literature shows that the time-averaged spectrum of AE Aqr increases roughly with frequency from the radio wavelengths up to ${\sim} 761~ \mu$m; our results indicate that it seems to be approximately flat between ~761 and ${\sim} 90 ~\mu$m, at the same level as the 3$\sigma$ upper limit at 170 $\mu$m; and it then decreases from ${\sim} 90 ~\mu$m to ${\sim} 7~ \mu$m. Thermal emission from dust grains or from a circum-binary disc seems to be very unlikely in AE Aqr, unless such a disc has properties substantially different from those predicted recently. Since various measurements and the usual assumptions on the source size suggest a brightness temperature below 109 K at $\lambda \leq 3.4$ mm, we have reconsidered also the possible mechanisms explaining the emission already known from the submillimetre to the radio. The complex average spectrum measured from ${\sim} 7~ \mu$m to the radio must be explained by emission from a plasma composed of more than one "pure" non-thermal electron energy distribution (usually assumed to be a power-law): either a very large volume (diameter $\geq$ 80 times the binary separation) could be the source of thermal bremsstrahlung which would dominate from ${\sim} 10 ~\mu$m to the ~millimetre, with, inside, a non-thermal source of synchrotron which dominates in radio; or, more probably, an initially small infrared source composed of several distributions (possibly both thermal, and non-thermal, mildly relativistic electrons) radiates gyro-synchrotron and expands moderately: it requires to be re-energised in order to lead to the observed, larger, radio source of highly relativistic electrons (in the form of several non-thermal distributions) which produce synchrotron.