7,221 results on '"Hashemi, P."'
Search Results
152. Towards Standardized Regulations for Block Chain Smart Contracts: Insights from Delphi and SWARA Analysis
- Author
-
Heidari, Shahin, Hashemi, Shannon, Khorsand, Mohammad-Soroush, Daneshfar, Alireza, and Jazayerifar, Seyedalireza
- Subjects
Economics - General Economics - Abstract
The rise of digital currency and the public ledger Block Chain has led to the development of a new type of electronic contract known as "smart contracts." For these contracts to be considered valid, they must adhere to traditional contract rules and be concluded without any impediments. Once written, encrypted, and signed, smart contracts are recorded in the Block Chain Ledger, providing transparent and secure record-keeping. Smart contracts offer several benefits, including their ability to execute automatically without requiring human intervention, their provision of public visibility of contract provisions on the Block Chain, their avoidance of financial crimes like Money Laundering, and their prevention of contract abuses. However, disputes arising from smart contracts still require human intervention, presenting unique challenges in enforcing these contracts, such as evidentiary issues, enforceability of waivers of defenses, and jurisdictional and choice-of-law considerations. Due to the novel nature of smart contracts, there are currently no standardized regulations that apply to them. Countries that have approved them have turned to customary law to legitimize their use. The Delphi method was used to identify critical success factors for applying blockchain transactions in a manufacturing company. Stepwise Weight Assessment Ratio Analysis (SWARA) was then utilized to determine the most influential factors. The proposed methodology was implemented, and results show that the most influential factors for the successful application of blockchain transactions as smart contracts in a manufacturing company are: turnover, the counter argument, vision, components for building, and system outcome quality. Conversely, connections with government entities and subcontractors, and the guarantee of quality have the least influence on successful implementation.
- Published
- 2024
153. Scaling Learning based Policy Optimization for Temporal Logic Tasks by Controller Network Dropout
- Author
-
Hashemi, Navid, Hoxha, Bardh, Prokhorov, Danil, Fainekos, Georgios, and Deshmukh, Jyotirmoy
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Computer Science - Robotics - Abstract
This paper introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly nonlinear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute the {\em robustness}, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent's task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and na\"{i}ve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To tackle this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion of {\em controller network dropout}, where we approximate the NN controller in several time-steps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology, can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable backpropagation over long time horizons and trajectories over high dimensional state spaces.
- Published
- 2024
154. FedNMUT -- Federated Noisy Model Update Tracking Convergence Analysis
- Author
-
Chellapandi, Vishnu Pandi, Upadhyay, Antesh, Hashemi, Abolfazl, and Żak, Stanislaw H.
- Subjects
Computer Science - Machine Learning ,Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
A novel Decentralized Noisy Model Update Tracking Federated Learning algorithm (FedNMUT) is proposed that is tailored to function efficiently in the presence of noisy communication channels that reflect imperfect information exchange. This algorithm uses gradient tracking to minimize the impact of data heterogeneity while minimizing communication overhead. The proposed algorithm incorporates noise into its parameters to mimic the conditions of noisy communication channels, thereby enabling consensus among clients through a communication graph topology in such challenging environments. FedNMUT prioritizes parameter sharing and noise incorporation to increase the resilience of decentralized learning systems against noisy communications. Theoretical results for the smooth non-convex objective function are provided by us, and it is shown that the $\epsilon-$stationary solution is achieved by our algorithm at the rate of $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$, where $T$ is the total number of communication rounds. Additionally, via empirical validation, we demonstrated that the performance of FedNMUT is superior to the existing state-of-the-art methods and conventional parameter-mixing approaches in dealing with imperfect information sharing. This proves the capability of the proposed algorithm to counteract the negative effects of communication noise in a decentralized learning framework., Comment: arXiv admin note: text overlap with arXiv:2303.10695
- Published
- 2024
155. Model-free Resilient Controller Design based on Incentive Feedback Stackelberg Game and Q-learning
- Author
-
Shen, Jiajun, Li, Fengjun, Hashemi, Morteza, and Fang, Huazhen
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Computer Science - Computer Science and Game Theory - Abstract
In the swift evolution of Cyber-Physical Systems (CPSs) within intelligent environments, especially in the industrial domain shaped by Industry 4.0, the surge in development brings forth unprecedented security challenges. This paper explores the intricate security issues of Industrial CPSs (ICPSs), with a specific focus on the unique threats presented by intelligent attackers capable of directly compromising the controller, thereby posing a direct risk to physical security. Within the framework of hierarchical control and incentive feedback Stackelberg game, we design a resilient leading controller (leader) that is adaptive to a compromised following controller (follower) such that the compromised follower acts cooperatively with the leader, aligning its strategies with the leader's objective to achieve a team-optimal solution. First, we provide sufficient conditions for the existence of an incentive Stackelberg solution when system dynamics are known. Then, we propose a Q-learning-based Approximate Dynamic Programming (ADP) approach, and corresponding algorithms for the online resolution of the incentive Stackelberg solution without requiring prior knowledge of system dynamics. Last but not least, we prove the convergence of our approach to the optimum., Comment: 8 pages
- Published
- 2024
156. Joint Modeling of Longitudinal Measurements and Time-to-event Outcomes Using BUGS
- Author
-
Baghfalaki, Taban, Ganjali, Mojtaba, Barbieri, Antoine, Hashemi, Reza, and Jacqmin-Gadda, Hélène
- Subjects
Statistics - Methodology ,Statistics - Computation ,62P99 ,I.m - Abstract
The objective of this paper is to provide an introduction to the principles of Bayesian joint modeling of longitudinal measurements and time-to-event outcomes, as well as model implementation using the BUGS language syntax. This syntax can be executed directly using OpenBUGS or by utilizing convenient functions to invoke OpenBUGS and JAGS from R software. In this paper, all details of joint models are provided, ranging from simple to more advanced models. The presentation started with the joint modeling of a Gaussian longitudinal marker and time-to-event outcome. The implementation of the Bayesian paradigm of the model is reviewed. The strategies for simulating data from the JM are also discussed. A proportional hazard model with various forms of baseline hazards, along with the discussion of all possible association structures between the two sub-models are taken into consideration. The paper covers joint models with multivariate longitudinal measurements, zero-inflated longitudinal measurements, competing risks, and time-to-event with cure fraction. The models are illustrated by the analyses of several real data sets. All simulated and real data and code are available at \url{https://github.com/tbaghfalaki/JM-with-BUGS-and-JAGS}., Comment: 43 pages, 10 figures
- Published
- 2024
157. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
- Author
-
Gemini Team, Georgiev, Petko, Lei, Ving Ian, Burnell, Ryan, Bai, Libin, Gulati, Anmol, Tanzer, Garrett, Vincent, Damien, Pan, Zhufeng, Wang, Shibo, Mariooryad, Soroosh, Ding, Yifan, Geng, Xinyang, Alcober, Fred, Frostig, Roy, Omernick, Mark, Walker, Lexi, Paduraru, Cosmin, Sorokin, Christina, Tacchetti, Andrea, Gaffney, Colin, Daruki, Samira, Sercinoglu, Olcan, Gleicher, Zach, Love, Juliette, Voigtlaender, Paul, Jain, Rohan, Surita, Gabriela, Mohamed, Kareem, Blevins, Rory, Ahn, Junwhan, Zhu, Tao, Kawintiranon, Kornraphop, Firat, Orhan, Gu, Yiming, Zhang, Yujing, Rahtz, Matthew, Faruqui, Manaal, Clay, Natalie, Gilmer, Justin, Co-Reyes, JD, Penchev, Ivo, Zhu, Rui, Morioka, Nobuyuki, Hui, Kevin, Haridasan, Krishna, Campos, Victor, Mahdieh, Mahdis, Guo, Mandy, Hassan, Samer, Kilgour, Kevin, Vezer, Arpi, Cheng, Heng-Tze, de Liedekerke, Raoul, Goyal, Siddharth, Barham, Paul, Strouse, DJ, Noury, Seb, Adler, Jonas, Sundararajan, Mukund, Vikram, Sharad, Lepikhin, Dmitry, Paganini, Michela, Garcia, Xavier, Yang, Fan, Valter, Dasha, Trebacz, Maja, Vodrahalli, Kiran, Asawaroengchai, Chulayuth, Ring, Roman, Kalb, Norbert, Soares, Livio Baldini, Brahma, Siddhartha, Steiner, David, Yu, Tianhe, Mentzer, Fabian, He, Antoine, Gonzalez, Lucas, Xu, Bibo, Kaufman, Raphael Lopez, Shafey, Laurent El, Oh, Junhyuk, Hennigan, Tom, Driessche, George van den, Odoom, Seth, Lucic, Mario, Roelofs, Becca, Lall, Sid, Marathe, Amit, Chan, Betty, Ontanon, Santiago, He, Luheng, Teplyashin, Denis, Lai, Jonathan, Crone, Phil, Damoc, Bogdan, Ho, Lewis, Riedel, Sebastian, Lenc, Karel, Yeh, Chih-Kuan, Chowdhery, Aakanksha, Xu, Yang, Kazemi, Mehran, Amid, Ehsan, Petrushkina, Anastasia, Swersky, Kevin, Khodaei, Ali, Chen, Gowoon, Larkin, Chris, Pinto, Mario, Yan, Geng, Badia, Adria Puigdomenech, Patil, Piyush, Hansen, Steven, Orr, Dave, Arnold, Sebastien M. R., Grimstad, Jordan, Dai, Andrew, Douglas, Sholto, Sinha, Rishika, Yadav, Vikas, Chen, Xi, Gribovskaya, Elena, Austin, Jacob, Zhao, Jeffrey, Patel, Kaushal, Komarek, Paul, Austin, Sophia, Borgeaud, Sebastian, Friso, Linda, Goyal, Abhimanyu, Caine, Ben, Cao, Kris, Chung, Da-Woon, Lamm, Matthew, Barth-Maron, Gabe, Kagohara, Thais, Olszewska, Kate, Chen, Mia, Shivakumar, Kaushik, Agarwal, Rishabh, Godhia, Harshal, Rajwar, Ravi, Snaider, Javier, Dotiwalla, Xerxes, Liu, Yuan, Barua, Aditya, Ungureanu, Victor, Zhang, Yuan, Batsaikhan, Bat-Orgil, Wirth, Mateo, Qin, James, Danihelka, Ivo, Doshi, Tulsee, Chadwick, Martin, Chen, Jilin, Jain, Sanil, Le, Quoc, Kar, Arjun, Gurumurthy, Madhu, Li, Cheng, Sang, Ruoxin, Liu, Fangyu, Lamprou, Lampros, Munoz, Rich, Lintz, Nathan, Mehta, Harsh, Howard, Heidi, Reynolds, Malcolm, Aroyo, Lora, Wang, Quan, Blanco, Lorenzo, Cassirer, Albin, Griffith, Jordan, Das, Dipanjan, Lee, Stephan, Sygnowski, Jakub, Fisher, Zach, Besley, James, Powell, Richard, Ahmed, Zafarali, Paulus, Dominik, Reitter, David, Borsos, Zalan, Joshi, Rishabh, Pope, Aedan, Hand, Steven, Selo, Vittorio, Jain, Vihan, Sethi, Nikhil, Goel, Megha, Makino, Takaki, May, Rhys, Yang, Zhen, Schalkwyk, Johan, Butterfield, Christina, Hauth, Anja, Goldin, Alex, Hawkins, Will, Senter, Evan, Brin, Sergey, Woodman, Oliver, Ritter, Marvin, Noland, Eric, Giang, Minh, Bolina, Vijay, Lee, Lisa, Blyth, Tim, Mackinnon, Ian, Reid, Machel, Sarvana, Obaid, Silver, David, Chen, Alexander, Wang, Lily, Maggiore, Loren, Chang, Oscar, Attaluri, Nithya, Thornton, Gregory, Chiu, Chung-Cheng, Bunyan, Oskar, Levine, Nir, Chung, Timothy, Eltyshev, Evgenii, Si, Xiance, Lillicrap, Timothy, Brady, Demetra, Aggarwal, Vaibhav, Wu, Boxi, Xu, Yuanzhong, McIlroy, Ross, Badola, Kartikeya, Sandhu, Paramjit, Moreira, Erica, Stokowiec, Wojciech, Hemsley, Ross, Li, Dong, Tudor, Alex, Shyam, Pranav, Rahimtoroghi, Elahe, Haykal, Salem, Sprechmann, Pablo, Zhou, Xiang, Mincu, Diana, Li, Yujia, Addanki, Ravi, Krishna, Kalpesh, Wu, Xiao, Frechette, Alexandre, Eyal, Matan, Dafoe, Allan, Lacey, Dave, Whang, Jay, Avrahami, Thi, Zhang, Ye, Taropa, Emanuel, Lin, Hanzhao, Toyama, Daniel, Rutherford, Eliza, Sano, Motoki, Choe, HyunJeong, Tomala, Alex, Safranek-Shrader, Chalence, Kassner, Nora, Pajarskas, Mantas, Harvey, Matt, Sechrist, Sean, Fortunato, Meire, Lyu, Christina, Elsayed, Gamaleldin, Kuang, Chenkai, Lottes, James, Chu, Eric, Jia, Chao, Chen, Chih-Wei, Humphreys, Peter, Baumli, Kate, Tao, Connie, Samuel, Rajkumar, Santos, Cicero Nogueira dos, Andreassen, Anders, Rakićević, Nemanja, Grewe, Dominik, Kumar, Aviral, Winkler, Stephanie, Caton, Jonathan, Brock, Andrew, Dalmia, Sid, Sheahan, Hannah, Barr, Iain, Miao, Yingjie, Natsev, Paul, Devlin, Jacob, Behbahani, Feryal, Prost, Flavien, Sun, Yanhua, Myaskovsky, Artiom, Pillai, Thanumalayan Sankaranarayana, Hurt, Dan, Lazaridou, Angeliki, Xiong, Xi, Zheng, Ce, Pardo, Fabio, Li, Xiaowei, Horgan, Dan, Stanton, Joe, Ambar, Moran, Xia, Fei, Lince, Alejandro, Wang, Mingqiu, Mustafa, Basil, Webson, Albert, Lee, Hyo, Anil, Rohan, Wicke, Martin, Dozat, Timothy, Sinha, Abhishek, Piqueras, Enrique, Dabir, Elahe, Upadhyay, Shyam, Boral, Anudhyan, Hendricks, Lisa Anne, Fry, Corey, Djolonga, Josip, Su, Yi, Walker, Jake, Labanowski, Jane, Huang, Ronny, Misra, Vedant, Chen, Jeremy, Skerry-Ryan, RJ, Singh, Avi, Rijhwani, Shruti, Yu, Dian, Castro-Ros, Alex, Changpinyo, Beer, Datta, Romina, Bagri, Sumit, Hrafnkelsson, Arnar Mar, Maggioni, Marcello, Zheng, Daniel, Sulsky, Yury, Hou, Shaobo, Paine, Tom Le, Yang, Antoine, Riesa, Jason, Rogozinska, Dominika, Marcus, Dror, Badawy, Dalia El, Zhang, Qiao, Wang, Luyu, Miller, Helen, Greer, Jeremy, Sjos, Lars Lowe, Nova, Azade, Zen, Heiga, Chaabouni, Rahma, Rosca, Mihaela, Jiang, Jiepu, Chen, Charlie, Liu, Ruibo, Sainath, Tara, Krikun, Maxim, Polozov, Alex, Lespiau, Jean-Baptiste, Newlan, Josh, Cankara, Zeyncep, Kwak, Soo, Xu, Yunhan, Chen, Phil, Coenen, Andy, Meyer, Clemens, Tsihlas, Katerina, Ma, Ada, Gottweis, Juraj, Xing, Jinwei, Gu, Chenjie, Miao, Jin, Frank, Christian, Cankara, Zeynep, Ganapathy, Sanjay, Dasgupta, Ishita, Hughes-Fitt, Steph, Chen, Heng, Reid, David, Rong, Keran, Fan, Hongmin, van Amersfoort, Joost, Zhuang, Vincent, Cohen, Aaron, Gu, Shixiang Shane, Mohananey, Anhad, Ilic, Anastasija, Tobin, Taylor, Wieting, John, Bortsova, Anna, Thacker, Phoebe, Wang, Emma, Caveness, Emily, Chiu, Justin, Sezener, Eren, Kaskasoli, Alex, Baker, Steven, Millican, Katie, Elhawaty, Mohamed, Aisopos, Kostas, Lebsack, Carl, Byrd, Nathan, Dai, Hanjun, Jia, Wenhao, Wiethoff, Matthew, Davoodi, Elnaz, Weston, Albert, Yagati, Lakshman, Ahuja, Arun, Gao, Isabel, Pundak, Golan, Zhang, Susan, Azzam, Michael, Sim, Khe Chai, Caelles, Sergi, Keeling, James, Sharma, Abhanshu, Swing, Andy, Li, YaGuang, Liu, Chenxi, Bostock, Carrie Grimes, Bansal, Yamini, Nado, Zachary, Anand, Ankesh, Lipschultz, Josh, Karmarkar, Abhijit, Proleev, Lev, Ittycheriah, Abe, Yeganeh, Soheil Hassas, Polovets, George, Faust, Aleksandra, Sun, Jiao, Rrustemi, Alban, Li, Pen, Shivanna, Rakesh, Liu, Jeremiah, Welty, Chris, Lebron, Federico, Baddepudi, Anirudh, Krause, Sebastian, Parisotto, Emilio, Soricut, Radu, Xu, Zheng, Bloxwich, Dawn, Johnson, Melvin, Neyshabur, Behnam, Mao-Jones, Justin, Wang, Renshen, Ramasesh, Vinay, Abbas, Zaheer, Guez, Arthur, Segal, Constant, Nguyen, Duc Dung, Svensson, James, Hou, Le, York, Sarah, Milan, Kieran, Bridgers, Sophie, Gworek, Wiktor, Tagliasacchi, Marco, Lee-Thorp, James, Chang, Michael, Guseynov, Alexey, Hartman, Ale Jakse, Kwong, Michael, Zhao, Ruizhe, Kashem, Sheleem, Cole, Elizabeth, Miech, Antoine, Tanburn, Richard, Phuong, Mary, Pavetic, Filip, Cevey, Sebastien, Comanescu, Ramona, Ives, Richard, Yang, Sherry, Du, Cosmo, Li, Bo, Zhang, Zizhao, Iinuma, Mariko, Hu, Clara Huiyi, Roy, Aurko, Bijwadia, Shaan, Zhu, Zhenkai, Martins, Danilo, Saputro, Rachel, Gergely, Anita, Zheng, Steven, Jia, Dawei, Antonoglou, Ioannis, Sadovsky, Adam, Gu, Shane, Bi, Yingying, Andreev, Alek, Samangooei, Sina, Khan, Mina, Kocisky, Tomas, Filos, Angelos, Kumar, Chintu, Bishop, Colton, Yu, Adams, Hodkinson, Sarah, Mittal, Sid, Shah, Premal, Moufarek, Alexandre, Cheng, Yong, Bloniarz, Adam, Lee, Jaehoon, Pejman, Pedram, Michel, Paul, Spencer, Stephen, Feinberg, Vladimir, Xiong, Xuehan, Savinov, Nikolay, Smith, Charlotte, Shakeri, Siamak, Tran, Dustin, Chesus, Mary, Bohnet, Bernd, Tucker, George, von Glehn, Tamara, Muir, Carrie, Mao, Yiran, Kazawa, Hideto, Slone, Ambrose, Soparkar, Kedar, Shrivastava, Disha, Cobon-Kerr, James, Sharman, Michael, Pavagadhi, Jay, Araya, Carlos, Misiunas, Karolis, Ghelani, Nimesh, Laskin, Michael, Barker, David, Li, Qiujia, Briukhov, Anton, Houlsby, Neil, Glaese, Mia, Lakshminarayanan, Balaji, Schucher, Nathan, Tang, Yunhao, Collins, Eli, Lim, Hyeontaek, Feng, Fangxiaoyu, Recasens, Adria, Lai, Guangda, Magni, Alberto, De Cao, Nicola, Siddhant, Aditya, Ashwood, Zoe, Orbay, Jordi, Dehghani, Mostafa, Brennan, Jenny, He, Yifan, Xu, Kelvin, Gao, Yang, Saroufim, Carl, Molloy, James, Wu, Xinyi, Arnold, Seb, Chang, Solomon, Schrittwieser, Julian, Buchatskaya, Elena, Radpour, Soroush, Polacek, Martin, Giordano, Skye, Bapna, Ankur, Tokumine, Simon, Hellendoorn, Vincent, Sottiaux, Thibault, Cogan, Sarah, Severyn, Aliaksei, Saleh, Mohammad, Thakoor, Shantanu, Shefey, Laurent, Qiao, Siyuan, Gaba, Meenu, Chang, Shuo-yiin, Swanson, Craig, Zhang, Biao, Lee, Benjamin, Rubenstein, Paul Kishan, Song, Gan, Kwiatkowski, Tom, Koop, Anna, Kannan, Ajay, Kao, David, Schuh, Parker, Stjerngren, Axel, Ghiasi, Golnaz, Gibson, Gena, Vilnis, Luke, Yuan, Ye, Ferreira, Felipe Tiengo, Kamath, Aishwarya, Klimenko, Ted, Franko, Ken, Xiao, Kefan, Bhattacharya, Indro, Patel, Miteyan, Wang, Rui, Morris, Alex, Strudel, Robin, Sharma, Vivek, Choy, Peter, Hashemi, Sayed Hadi, Landon, Jessica, Finkelstein, Mara, Jhakra, Priya, Frye, Justin, Barnes, Megan, Mauger, Matthew, Daun, Dennis, Baatarsukh, Khuslen, Tung, Matthew, Farhan, Wael, Michalewski, Henryk, Viola, Fabio, Quitry, Felix de Chaumont, Lan, Charline Le, Hudson, Tom, Wang, Qingze, Fischer, Felix, Zheng, Ivy, White, Elspeth, Dragan, Anca, Alayrac, Jean-baptiste, Ni, Eric, Pritzel, Alexander, Iwanicki, Adam, Isard, Michael, Bulanova, Anna, Zilka, Lukas, Dyer, Ethan, Sachan, Devendra, Srinivasan, Srivatsan, Muckenhirn, Hannah, Cai, Honglong, Mandhane, Amol, Tariq, Mukarram, Rae, Jack W., Wang, Gary, Ayoub, Kareem, FitzGerald, Nicholas, Zhao, Yao, Han, Woohyun, Alberti, Chris, Garrette, Dan, Krishnakumar, Kashyap, Gimenez, Mai, Levskaya, Anselm, Sohn, Daniel, Matak, Josip, Iturrate, Inaki, Chang, Michael B., Xiang, Jackie, Cao, Yuan, Ranka, Nishant, Brown, Geoff, Hutter, Adrian, Mirrokni, Vahab, Chen, Nanxin, Yao, Kaisheng, Egyed, Zoltan, Galilee, Francois, Liechty, Tyler, Kallakuri, Praveen, Palmer, Evan, Ghemawat, Sanjay, Liu, Jasmine, Tao, David, Thornton, Chloe, Green, Tim, Jasarevic, Mimi, Lin, Sharon, Cotruta, Victor, Tan, Yi-Xuan, Fiedel, Noah, Yu, Hongkun, Chi, Ed, Neitz, Alexander, Heitkaemper, Jens, Sinha, Anu, Zhou, Denny, Sun, Yi, Kaed, Charbel, Hulse, Brice, Mishra, Swaroop, Georgaki, Maria, Kudugunta, Sneha, Farabet, Clement, Shafran, Izhak, Vlasic, Daniel, Tsitsulin, Anton, Ananthanarayanan, Rajagopal, Carin, Alen, Su, Guolong, Sun, Pei, V, Shashank, Carvajal, Gabriel, Broder, Josef, Comsa, Iulia, Repina, Alena, Wong, William, Chen, Warren Weilun, Hawkins, Peter, Filonov, Egor, Loher, Lucia, Hirnschall, Christoph, Wang, Weiyi, Ye, Jingchen, Burns, Andrea, Cate, Hardie, Wright, Diana Gage, Piccinini, Federico, Zhang, Lei, Lin, Chu-Cheng, Gog, Ionel, Kulizhskaya, Yana, Sreevatsa, Ashwin, Song, Shuang, Cobo, Luis C., Iyer, Anand, Tekur, Chetan, Garrido, Guillermo, Xiao, Zhuyun, Kemp, Rupert, Zheng, Huaixiu Steven, Li, Hui, Agarwal, Ananth, Ngani, Christel, Goshvadi, Kati, Santamaria-Fernandez, Rebeca, Fica, Wojciech, Chen, Xinyun, Gorgolewski, Chris, Sun, Sean, Garg, Roopal, Ye, Xinyu, Eslami, S. M. Ali, Hua, Nan, Simon, Jon, Joshi, Pratik, Kim, Yelin, Tenney, Ian, Potluri, Sahitya, Thiet, Lam Nguyen, Yuan, Quan, Luisier, Florian, Chronopoulou, Alexandra, Scellato, Salvatore, Srinivasan, Praveen, Chen, Minmin, Koverkathu, Vinod, Dalibard, Valentin, Xu, Yaming, Saeta, Brennan, Anderson, Keith, Sellam, Thibault, Fernando, Nick, Huot, Fantine, Jung, Junehyuk, Varadarajan, Mani, Quinn, Michael, Raul, Amit, Le, Maigo, Habalov, Ruslan, Clark, Jon, Jalan, Komal, Bullard, Kalesha, Singhal, Achintya, Luong, Thang, Wang, Boyu, Rajayogam, Sujeevan, Eisenschlos, Julian, Jia, Johnson, Finchelstein, Daniel, Yakubovich, Alex, Balle, Daniel, Fink, Michael, Agarwal, Sameer, Li, Jing, Dvijotham, Dj, Pal, Shalini, Kang, Kai, Konzelmann, Jaclyn, Beattie, Jennifer, Dousse, Olivier, Wu, Diane, Crocker, Remi, Elkind, Chen, Jonnalagadda, Siddhartha Reddy, Lee, Jong, Holtmann-Rice, Dan, Kallarackal, Krystal, Liu, Rosanne, Vnukov, Denis, Vats, Neera, Invernizzi, Luca, Jafari, Mohsen, Zhou, Huanjie, Taylor, Lilly, Prendki, Jennifer, Wu, Marcus, Eccles, Tom, Liu, Tianqi, Kopparapu, Kavya, Beaufays, Francoise, Angermueller, Christof, Marzoca, Andreea, Sarcar, Shourya, Dib, Hilal, Stanway, Jeff, Perbet, Frank, Trdin, Nejc, Sterneck, Rachel, Khorlin, Andrey, Li, Dinghua, Wu, Xihui, Goenka, Sonam, Madras, David, Goldshtein, Sasha, Gierke, Willi, Zhou, Tong, Liu, Yaxin, Liang, Yannie, White, Anais, Li, Yunjie, Singh, Shreya, Bahargam, Sanaz, Epstein, Mark, Basu, Sujoy, Lao, Li, Ozturel, Adnan, Crous, Carl, Zhai, Alex, Lu, Han, Tung, Zora, Gaur, Neeraj, Walton, Alanna, Dixon, Lucas, Zhang, Ming, Globerson, Amir, Uy, Grant, Bolt, Andrew, Wiles, Olivia, Nasr, Milad, Shumailov, Ilia, Selvi, Marco, Piccinno, Francesco, Aguilar, Ricardo, McCarthy, Sara, Khalman, Misha, Shukla, Mrinal, Galic, Vlado, Carpenter, John, Villela, Kevin, Zhang, Haibin, Richardson, Harry, Martens, James, Bosnjak, Matko, Belle, Shreyas Rammohan, Seibert, Jeff, Alnahlawi, Mahmoud, McWilliams, Brian, Singh, Sankalp, Louis, Annie, Ding, Wen, Popovici, Dan, Simicich, Lenin, Knight, Laura, Mehta, Pulkit, Gupta, Nishesh, Shi, Chongyang, Fatehi, Saaber, Mitrovic, Jovana, Grills, Alex, Pagadora, Joseph, Munkhdalai, Tsendsuren, Petrova, Dessie, Eisenbud, Danielle, Zhang, Zhishuai, Yates, Damion, Mittal, Bhavishya, Tripuraneni, Nilesh, Assael, Yannis, Brovelli, Thomas, Jain, Prateek, Velimirovic, Mihajlo, Akbulut, Canfer, Mu, Jiaqi, Macherey, Wolfgang, Kumar, Ravin, Xu, Jun, Qureshi, Haroon, Comanici, Gheorghe, Wiesner, Jeremy, Gong, Zhitao, Ruddock, Anton, Bauer, Matthias, Felt, Nick, GP, Anirudh, Arnab, Anurag, Zelle, Dustin, Rothfuss, Jonas, Rosgen, Bill, Shenoy, Ashish, Seybold, Bryan, Li, Xinjian, Mudigonda, Jayaram, Erdogan, Goker, Xia, Jiawei, Simsa, Jiri, Michi, Andrea, Yao, Yi, Yew, Christopher, Kan, Steven, Caswell, Isaac, Radebaugh, Carey, Elisseeff, Andre, Valenzuela, Pedro, McKinney, Kay, Paterson, Kim, Cui, Albert, Latorre-Chimoto, Eri, Kim, Solomon, Zeng, William, Durden, Ken, Ponnapalli, Priya, Sosea, Tiberiu, Choquette-Choo, Christopher A., Manyika, James, Robenek, Brona, Vashisht, Harsha, Pereira, Sebastien, Lam, Hoi, Velic, Marko, Owusu-Afriyie, Denese, Lee, Katherine, Bolukbasi, Tolga, Parrish, Alicia, Lu, Shawn, Park, Jane, Venkatraman, Balaji, Talbert, Alice, Rosique, Lambert, Cheng, Yuchung, Sozanschi, Andrei, Paszke, Adam, Kumar, Praveen, Austin, Jessica, Li, Lu, Salama, Khalid, Perz, Bartek, Kim, Wooyeol, Dukkipati, Nandita, Baryshnikov, Anthony, Kaplanis, Christos, Sheng, XiangHai, Chervonyi, Yuri, Unlu, Caglar, Casas, Diego de Las, Askham, Harry, Tunyasuvunakool, Kathryn, Gimeno, Felix, Poder, Siim, Kwak, Chester, Miecnikowski, Matt, Dimitriev, Alek, Parisi, Aaron, Liu, Dangyi, Tsai, Tomy, Shevlane, Toby, Kouridi, Christina, Garmon, Drew, Goedeckemeyer, Adrian, Brown, Adam R., Vijayakumar, Anitha, Elqursh, Ali, Jazayeri, Sadegh, Huang, Jin, Carthy, Sara Mc, Hoover, Jay, Kim, Lucy, Kumar, Sandeep, Chen, Wei, Biles, Courtney, Bingham, Garrett, Rosen, Evan, Wang, Lisa, Tan, Qijun, Engel, David, Pongetti, Francesco, de Cesare, Dario, Hwang, Dongseong, Yu, Lily, Pullman, Jennifer, Narayanan, Srini, Levin, Kyle, Gopal, Siddharth, Li, Megan, Aharoni, Asaf, Trinh, Trieu, Lo, Jessica, Casagrande, Norman, Vij, Roopali, Matthey, Loic, Ramadhana, Bramandia, Matthews, Austin, Carey, CJ, Johnson, Matthew, Goranova, Kremena, Shah, Rohin, Ashraf, Shereen, Dasgupta, Kingshuk, Larsen, Rasmus, Wang, Yicheng, Vuyyuru, Manish Reddy, Jiang, Chong, Ijazi, Joana, Osawa, Kazuki, Smith, Celine, Boppana, Ramya Sree, Bilal, Taylan, Koizumi, Yuma, Xu, Ying, Altun, Yasemin, Shabat, Nir, Bariach, Ben, Korchemniy, Alex, Choo, Kiam, Ronneberger, Olaf, Iwuanyanwu, Chimezie, Zhao, Shubin, Soergel, David, Hsieh, Cho-Jui, Cai, Irene, Iqbal, Shariq, Sundermeyer, Martin, Chen, Zhe, Bursztein, Elie, Malaviya, Chaitanya, Biadsy, Fadi, Shroff, Prakash, Dhillon, Inderjit, Latkar, Tejasi, Dyer, Chris, Forbes, Hannah, Nicosia, Massimo, Nikolaev, Vitaly, Greene, Somer, Georgiev, Marin, Wang, Pidong, Martin, Nina, Sedghi, Hanie, Zhang, John, Banzal, Praseem, Fritz, Doug, Rao, Vikram, Wang, Xuezhi, Zhang, Jiageng, Patraucean, Viorica, Du, Dayou, Mordatch, Igor, Jurin, Ivan, Liu, Lewis, Dubey, Ayush, Mohan, Abhi, Nowakowski, Janek, Ion, Vlad-Doru, Wei, Nan, Tojo, Reiko, Raad, Maria Abi, Hudson, Drew A., Keshava, Vaishakh, Agrawal, Shubham, Ramirez, Kevin, Wu, Zhichun, Nguyen, Hoang, Liu, Ji, Sewak, Madhavi, Petrini, Bryce, Choi, DongHyun, Philips, Ivan, Wang, Ziyue, Bica, Ioana, Garg, Ankush, Wilkiewicz, Jarek, Agrawal, Priyanka, Guo, Danhao, Xue, Emily, Shaik, Naseer, Leach, Andrew, Khan, Sadh MNM, Wiesinger, Julia, Jerome, Sammy, Chakladar, Abhishek, Wang, Alek Wenjiao, Ornduff, Tina, Abu, Folake, Ghaffarkhah, Alireza, Wainwright, Marcus, Cortes, Mario, Liu, Frederick, Maynez, Joshua, Terzis, Andreas, Samangouei, Pouya, Mansour, Riham, Kępa, Tomasz, Aubet, François-Xavier, Algymr, Anton, Banica, Dan, Weisz, Agoston, Orban, Andras, Senges, Alexandre, Andrejczuk, Ewa, Geller, Mark, Santo, Niccolo Dal, Anklin, Valentin, Merey, Majd Al, Baeuml, Martin, Strohman, Trevor, Bai, Junwen, Petrov, Slav, Wu, Yonghui, Hassabis, Demis, Kavukcuoglu, Koray, Dean, Jeff, and Vinyals, Oriol
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
- Published
- 2024
158. Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation
- Author
-
Hashemi, Baran
- Subjects
Physics - Instrumentation and Detectors ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
Simulating ultra-high-granularity detector responses in Particle Physics represents a critical yet computationally demanding task. This thesis aims to overcome this challenge for the Pixel Vertex Detector (PXD) at the Belle II experiment, which features over 7.5M pixel channels-the highest spatial resolution detector simulation dataset ever analysed with generative models. This thesis starts off by a comprehensive and taxonomic review on generative models for simulating detector signatures. Then, it presents the Intra-Event Aware Generative Adversarial Network (IEA-GAN), a new geometry-aware generative model that introduces a relational attentive reasoning and Self-Supervised Learning to approximate an "event" in the detector. This study underscores the importance of intra-event correlation for downstream physics analyses. Building upon this, the work drifts towards a more generic approach and presents YonedaVAE, a Category Theory-inspired generative model that tackles the open problem of Out-of-Distribution (OOD) simulation. YonedaVAE introduces a learnable Yoneda embedding to capture the entirety of an event based on its sensor relationships, formulating a Category theoretical language for intra-event relational reasoning. This is complemented by introducing a Self-Supervised learnable prior for VAEs and an Adaptive Top-q sampling mechanism, enabling the model to sample point clouds with variable intra-category cardinality in a zero-shot manner. Variable Intra-event cardinality has not been approached before and is vital for simulating irregular detector geometries. Trained on an early experiment data, YonedaVAE can reach a reasonable OOD simulation precision of a later experiment with almost double luminosity. This study introduces, for the first time, the results of using deep generative models for ultra-high granularity detector simulation in Particle Physics., Comment: PhD thesis, 234 pages
- Published
- 2024
159. Accelerating Hydrodynamic Fabrication of Microstructures using Deep Neural Networks
- Author
-
Clinkinbeard, Nicholus R., Montazami, Reza, and Hashemi, Nicole N.
- Subjects
Computer Science - Computational Engineering, Finance, and Science - Abstract
Manufacturing of microstructures using a microfluidic device is a largely empirical effort due to the multi-physical nature of the fabrication process. As such, models are desired that will predict microstructure performance characteristics (e.g., size, porosity, and stiffness) based on known inputs, such as sheath and core fluid flow rates. Potentially more useful is the prospect of inputting desired performance characteristics into a design model to extract appropriate manufacturing parameters. In this study, we demonstrate that deep neural networks (DNNs) trained with sparse datasets augmented by synthetic data can produce accurate predictive and design models. For our predictive model with known sheath and core flow rates and bath solution percentage, calculated solid microfiber dimensions are shown to be greater than 95% accurate, with porosity and Young's modulus exhibiting greater than 90% accuracy for a majority of conditions. Likewise, the design model is able to recover sheath and core flow rates with 95% accuracy when provided values for microfiber dimensions, porosity, and Young's modulus. As a result, DNN-based modeling of the microfiber fabrication process demonstrates high potential for reducing time to manufacture of microstructures with desired characteristics.
- Published
- 2024
160. Unveiling Privacy, Memorization, and Input Curvature Links
- Author
-
Ravikumar, Deepak, Soufleri, Efstathia, Hashemi, Abolfazl, and Roy, Kaushik
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Cryptography and Security - Abstract
Deep Neural Nets (DNNs) have become a pervasive tool for solving many emerging problems. However, they tend to overfit to and memorize the training set. Memorization is of keen interest since it is closely related to several concepts such as generalization, noisy learning, and privacy. To study memorization, Feldman (2019) proposed a formal score, however its computational requirements limit its practical use. Recent research has shown empirical evidence linking input loss curvature (measured by the trace of the loss Hessian w.r.t inputs) and memorization. It was shown to be ~3 orders of magnitude more efficient than calculating the memorization score. However, there is a lack of theoretical understanding linking memorization with input loss curvature. In this paper, we not only investigate this connection but also extend our analysis to establish theoretical links between differential privacy, memorization, and input loss curvature. First, we derive an upper bound on memorization characterized by both differential privacy and input loss curvature. Second, we present a novel insight showing that input loss curvature is upper-bounded by the differential privacy parameter. Our theoretical findings are further empirically validated using deep models on CIFAR and ImageNet datasets, showing a strong correlation between our theoretical predictions and results observed in practice.
- Published
- 2024
161. Toward Learning Latent-Variable Representations of Microstructures by Optimizing in Spatial Statistics Space
- Author
-
Hashemi, Sayed Sajad, Guerzhoy, Michael, and Paulson, Noah H.
- Subjects
Computer Science - Machine Learning ,Condensed Matter - Materials Science - Abstract
In Materials Science, material development involves evaluating and optimizing the internal structures of the material, generically referred to as microstructures. Microstructures structure is stochastic, analogously to image textures. A particular microstructure can be well characterized by its spatial statistics, analogously to image texture being characterized by the response to a Fourier-like filter bank. Material design would benefit from low-dimensional representation of microstructures Paulson et al. (2017). In this work, we train a Variational Autoencoders (VAE) to produce reconstructions of textures that preserve the spatial statistics of the original texture, while not necessarily reconstructing the same image in data space. We accomplish this by adding a differentiable term to the cost function in order to minimize the distance between the original and the reconstruction in spatial statistics space. Our experiments indicate that it is possible to train a VAE that minimizes the distance in spatial statistics space between the original and the reconstruction of synthetic images. In future work, we will apply the same techniques to microstructures, with the goal of obtaining low-dimensional representations of material microstructures.
- Published
- 2024
162. Universal Design Methodology for Printable Microstructural Materials via a New Deep Generative Learning Model: Application to a Piezocomposite
- Author
-
Hashemi, Mohammad Saber, Nguyen, Khiem, Kirby, Levi, Song, Xuan, and Sheidaei, Azadeh
- Subjects
Condensed Matter - Materials Science - Abstract
We devised a general heterogeneous microstructural design methodology applied to a specific material system, elasto-electro-active piezoelectric ceramic embedded plastics, which has great potential in sensing, 5G communication, and energy harvesting. Due to the multiphysics interactions of the studied material system, we have developed an accurate and efficient FFT-based numerical method to find the multifunctional properties of diverse cellular microstructures generated by our HetMiGen code. To mine this big dataset, we used our customized physics-aware generative neural network in the format of a VAE with convolutional neural layers augmented by a vision transformer to learn long-distance features which may affect the properties of the 3D voxelized microstructures. In training, the decoder learns how to map the property distribution to the appropriate high-dimensional distribution of 3D microstructures. Therefore, it can be considered an online material designer within the explored design space during its inference phase., Comment: 40 pages, 11 figure, original research article
- Published
- 2024
163. Graph Mamba: Towards Learning on Graphs with State Space Models
- Author
-
Behrouz, Ali and Hashemi, Farnoosh
- Subjects
Computer Science - Machine Learning - Abstract
Graph Neural Networks (GNNs) have shown promising potential in graph representation learning. The majority of GNNs define a local message-passing mechanism, propagating information over the graph by stacking multiple layers. These methods, however, are known to suffer from two major limitations: over-squashing and poor capturing of long-range dependencies. Recently, Graph Transformers (GTs) emerged as a powerful alternative to Message-Passing Neural Networks (MPNNs). GTs, however, have quadratic computational cost, lack inductive biases on graph structures, and rely on complex Positional/Structural Encodings (SE/PE). In this paper, we show that while Transformers, complex message-passing, and SE/PE are sufficient for good performance in practice, neither is necessary. Motivated by the recent success of State Space Models (SSMs), such as Mamba, we present Graph Mamba Networks (GMNs), a general framework for a new class of GNNs based on selective SSMs. We discuss and categorize the new challenges when adapting SSMs to graph-structured data, and present four required and one optional steps to design GMNs, where we choose (1) Neighborhood Tokenization, (2) Token Ordering, (3) Architecture of Bidirectional Selective SSM Encoder, (4) Local Encoding, and dispensable (5) PE and SE. We further provide theoretical justification for the power of GMNs. Experiments demonstrate that despite much less computational cost, GMNs attain an outstanding performance in long-range, small-scale, large-scale, and heterophilic benchmark datasets.
- Published
- 2024
164. Semantic-Aware and Goal-Oriented Communications for Object Detection in Wireless End-to-End Image Transmission
- Author
-
Safaeipour, Fatemeh Zahra and Hashemi, Morteza
- Subjects
Computer Science - Information Theory ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Semantic communication is focused on optimizing the exchange of information by transmitting only the most relevant data required to convey the intended message to the receiver and achieve the desired communication goal. For example, if we consider images as the information and the goal of the communication is object detection at the receiver side, the semantic of information would be the objects in each image. Therefore, by only transferring the semantics of images we can achieve the communication goal. In this paper, we propose a design framework for implementing semantic-aware and goal-oriented communication of images. To achieve this, we first define the baseline problem as a set of mathematical problems that can be optimized to improve the efficiency and effectiveness of the communication system. We consider two scenarios in which either the data rate or the error at the receiver is the limiting constraint. Our proposed system model and solution is inspired by the concept of auto-encoders, where the encoder and the decoder are respectively implemented at the transmitter and receiver to extract semantic information for specific object detection goals. Our numerical results validate the proposed design framework to achieve low error or near-optimal in a goal-oriented communication system while reducing the amount of data transfers., Comment: International Conference on Computing, Networking and Communications (ICNC 2024)
- Published
- 2024
165. A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and Condensation
- Author
-
Hashemi, Mohammad, Gong, Shengbo, Ni, Juntong, Fan, Wenqi, Prakash, B. Aditya, and Jin, Wei
- Subjects
Computer Science - Social and Information Networks ,Computer Science - Artificial Intelligence ,Computer Science - Data Structures and Algorithms ,Computer Science - Machine Learning - Abstract
Many real-world datasets can be naturally represented as graphs, spanning a wide range of domains. However, the increasing complexity and size of graph datasets present significant challenges for analysis and computation. In response, graph reduction, or graph summarization, has gained prominence for simplifying large graphs while preserving essential properties. In this survey, we aim to provide a comprehensive understanding of graph reduction methods, including graph sparsification, graph coarsening, and graph condensation. Specifically, we establish a unified definition for these methods and introduce a hierarchical taxonomy to categorize the challenges they address. Our survey then systematically reviews the technical details of these methods and emphasizes their practical applications across diverse scenarios. Furthermore, we outline critical research directions to ensure the continued effectiveness of graph reduction techniques, as well as provide a comprehensive paper list at \url{https://github.com/Emory-Melody/awesome-graph-reduction}. We hope this survey will bridge literature gaps and propel the advancement of this promising field., Comment: Accepted by IJCAI 2024 (This ArXiv version is a long version of our IJCAI paper)
- Published
- 2024
166. Wireless Power Transfer in Space using Flexible, Lightweight, Coherent Arrays
- Author
-
Ayling, Alex, Fikes, Austin, Mizrahi, Oren S., Wu, Ailec, Riazati, Raha, Brunet, Jesse, Abiri, Behrooz, Bohn, Florian, Gal-Katziri, Matan, Hashemi, Mohammed Reza M., Padmanabhan, Sharmila, Russell, Damon, and Hajimiri, Ali
- Subjects
Physics - Applied Physics - Abstract
Space solar power (SSP), envisioned for decades as a solution for continuous, stable, and dynamically dispatchable clean energy, has seen tremendous interest and a number of experimental demonstrations in the last few years. A practical implementation has been elusive to date, owing to the high launch costs associated with heavy, rigid photovoltaic (PV) and wireless power transfer (WPT) arrays. Lightweight and flexible solutions for WPT have been demonstrated terrestrially but, to date, have not been deployed and tested in space. In this paper, we present an experimental space demonstration of a lightweight, flexible WPT array powered by custom radio frequency integrated circuits (RFICs). The transmit arrays, receive arrays, and the rest of the system were operated and tested for eight months in Low Earth Orbit (LEO). Results from these experiments, including pointing of the array's beam to Earth and its detection by a ground station, are presented and discussed in detail. Observations and results from this mission uncover existing strengths and weaknesses that inform future steps toward realizing SSP., Comment: 19 pages, 23 figures. These authors contributed equally: Alex Ayling, Austin Fikes, Oren S. Mizrahi, Ailec Wu. Updated on 2024/02/16 to reflect the current and former affiliations of the authors
- Published
- 2024
167. Interference-Aware Queuing Analysis for Distributed Transmission Control in UAV Networks
- Author
-
Ghazikor, Masoud, Roach, Keenan, Cheung, Kenny, and Hashemi, Morteza
- Subjects
Computer Science - Information Theory - Abstract
In this paper, we investigate the problem of distributed transmission control for unmanned aerial vehicles (UAVs) operating in unlicensed spectrum bands. We develop a rigorous interference-aware queuing analysis framework that jointly considers two inter-dependent factors: (i) limited-size queues with delay-constrained packet arrival, and (ii) in-band interference introduced by other ground/aerial users. We aim to optimize the expected throughput by jointly analyzing these factors. In the queuing analysis, we explore two packet loss probabilities including, buffer overflow model and time threshold model. For interference analysis, we investigate the outage probability and packet losses due to low signal-to-interference-plus-noise ratio (SINR). We introduce two algorithms namely, Interference-Aware Transmission Control (IA-TC), and Interference-Aware Distributed Transmission Control (IA-DTC). These algorithms maximize the expected throughput by adjusting transmission policies to balance the trade-offs between packet drop from queues vs. transmission errors due to low SINRs. We implement the proposed algorithms and demonstrate that the optimal transmission policy under various scenarios is found., Comment: IEEE International Conference on Communications (ICC)
- Published
- 2024
168. Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
- Author
-
Hashemi, Seyed Mohammad Hossein, Safari, Leila, and Taromi, Amirhossein Dadashzadeh
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios., Comment: This work has been submitted to the Elsevier for possible publication
- Published
- 2024
169. Lab-on-a-Disk Particle Separation Using a Novel Automated Slab Valve for Two-Step Filtration
- Author
-
Dezhkam, Rasool, Pishbin, Esmail, Moghaddam, Ermia Azari, Rahi, Amid, Hashemi, Nader, and Shamloo, Amir
- Published
- 2025
- Full Text
- View/download PDF
170. Engineered Niosomes for Cancer Therapy: Classification, Synthesis, and Clinical Applications
- Author
-
Hashemi, Zahra, Beheshtizadeh, Nima, Jaymand, Mehdi, Jahanban-Esfahlan, Ali, Akbari, Morteza, and Jahanban Esfahlan, Rana
- Published
- 2025
- Full Text
- View/download PDF
171. Hidden in plain sight: new morpho-molecular data on the cryptic tropical sand goby, Favonigobius reichei (Bleeker, 1854) (Teleostei: Gobiidae: Gobiinae) from the northwestern Indian Ocean
- Author
-
Esmaeili, Hamid Reza, Zarei, Fatah, Sadeghi, Reza, Sholeh, Vahid, Sadeghi, Yeganeh, and Hashemi, Seyed Hassan
- Published
- 2025
- Full Text
- View/download PDF
172. The effects of ursodeoxycholic acid on Parkinson’s disease, a mechanistic review of the recent evidence
- Author
-
Razavi, Seyed Mehrad, Esmaealzadeh, Niusha, Ataei, Mazyar, Afshari, Nadia, Saleh, Moloud, Amini, Yasaman, Hasrati, Sadaf, Ghazizadeh Hashemi, Fatemeh, Mortazavi, Abolghasem, Mohaghegh Shalmani, Leila, and Abdolghaffari, Amir Hossein
- Published
- 2025
- Full Text
- View/download PDF
173. Magnetic nanocomposites: innovative adsorbents for antibiotics removal from aqueous environments–a narrative review
- Author
-
Abolghasemi, Sahar, Nasiri, Alireza, Hashemi, Majid, Rajabi, Saeed, and Rahimi, Fatemeh
- Published
- 2025
- Full Text
- View/download PDF
174. Seismic-well tie using fuzzy properties of acoustic impedance in the dynamic time warping
- Author
-
Jahanjooy, Saber, Hashemi, Hosein, Bagheri, Majid, and Karam, Dunya Bahram
- Published
- 2025
- Full Text
- View/download PDF
175. Decoupling interfacial compatibilization and chain extension in polymer blends using rheology: PBAT/EVOH with MDI
- Author
-
Dadashi, Parsa, Soltani, Ensieh, Elhamnia, Mehdi, and Motlagh, Ghodratollah Hashemi
- Published
- 2025
- Full Text
- View/download PDF
176. Prediction of CO2 solubility in aqueous and organic solvent systems through machine learning techniques
- Author
-
Besharati, Zahra and Hashemi, Seyed Hossein
- Published
- 2025
- Full Text
- View/download PDF
177. Exploration of soliton structures and modulation instability analysis for the highly dispersive perturbed NLSE with sextic-power law refractive index: Exploration of soliton...
- Author
-
Abdullah, Eman H. M., Ahmed, Hamdy M., Zaghrout, Afaf A. S., Bahnasy, Amal Ibrahim Ahmed, Rabie, Wafaa B., Hashemi, M. S., and Bayram, M.
- Published
- 2025
- Full Text
- View/download PDF
178. Investigation of groundwater quality indices and health risk assessment of water resources of Jiroft city, Iran, by machine learning algorithms
- Author
-
Maleky, Sobhan, Faraji, Maryam, Hashemi, Majid, and Esfandyari, Akbar
- Published
- 2025
- Full Text
- View/download PDF
179. Optimization-based Level-Set Re-initialization: A Robust Interface Preserving Approach in Multiphase Problems
- Author
-
Hashemi, A., Hashemi, M. R., Ryzhakov, P., and Rossi, R.
- Subjects
Physics - Fluid Dynamics ,Physics - Computational Physics - Abstract
In spite of its overall efficiency and robustness for capturing the interface in multiphase fluid dynamics simulations, the well-known shortcoming of the level-set method is associated with the lack of a systematic approach for preserving the regularity of the distance function. This is mainly due to the stretching (or compressing) effect of the strain rate especially in the vicinity of the liquid-gas interface. Level-set re-initialization is an effective treatment for this issue. However, the traditional approach based on the hyperbolic Hamilton-Jacobi equation is a computationally expensive procedure. Crucially, due to the hyperbolic nature of the formulation, the accuracy of the results hinges significantly on the specialized handling of blind spots near the liquid-gas interface intersecting the substrate. The present work proposes a two-step elliptic level-set re-initialization approach that strictly preserves the location of zero level-set via incorporation of an element splitting process. The primary initialization step helps remove any non-smoothness in the to-be regularized level-set function dramatically improving the efficiency of the secondary optimization step. Geometric representation of the boundary conditions is utilized in the initialization step, while the optimization step minimizes the reliance of the results on the treatment of the blind spots. The performance of the proposed method is examined for free and sessile three-dimensional droplets.
- Published
- 2023
180. Recruitment Strategies for Master's Degree in AI among High Achieving Low-Income Engineering Students
- Author
-
Dimitrios Pados, Javad Hashemi, Nancy Romance, Xingquan (Hill) Zhu, and Stella Batalama
- Abstract
The unprecedented growth in the use of AI and its related technologies will put a tremendous stress on US institutions to produce the required number of technologically prepared workers to fill critically important job openings. In the US, low-income and URM students participate less vigorously in STEM-related fields; the problem is even more serious in post-baccalaureate level degrees. To address the future needs of the nation, we must increase the number of low-income students in STEM, with special attention to AI related technologies, to fill the millions of technology job openings. This paper will report on the impact of a NSF SSTEM project in which we combined (a) a mentorship model for talented, low-income students to develop a sense of self-efficacy and belongingness along with (b) a model of curricular and co-curricular supports (e.g., including engagement with AI technologies and research) and (c) limited financial assistance, all of which have increased the low-income student success in completing both their BS degree in engineering and their MS degree in AI, and addressing a national need. [For the full proceedings, see ED656038.]
- Published
- 2023
181. English Teachers' Conceptions of EIL, the Associated Principles and Corresponding Instructional Practices: A Theory of Planned Behavior Analysis
- Author
-
Ziaabadi, Fariba, Karimi, Mohammad N., and Hashemi, Mohammad R.
- Abstract
Despite English teachers' acknowledgement of the plurality of English and the emergence of different varieties of the language, the actual manifestations of this plurality and the associated principles do not seem to be equally embraced in their classroom approach. Against this background, this study investigated Iranian English teachers' conceptions of English as an International Language (EIL) and their corresponding instructional practices through semistructured interviews and non-participant classroom observations. Drawing upon the theory of planned behavior (TPB), as the theoretical/analytical framework, the researchers explored the participant teachers' behavioral, normative, and control beliefs underlying their intentions and actual classroom practices with regard to EIL. Findings revealed that although the teachers acknowledged the importance of raising learners' awareness of EIL in different aspects of their language use, they still leaned towards standard American or British English in their actual instructional practices. Such propensity was informed by their attitudes toward the inclusion of EIL principles, their perceptions of the existing social pressures, and their perceived difficulty of adopting an EIL-aware pedagogy. Moreover, the participant teachers' actual classroom instructions were found to be incongruent with their beliefs about the importance of raising students' awareness regarding different English varieties. Implications for language teacher education are discussed.
- Published
- 2023
182. Distribution and associated factors of keratometry and corneal astigmatism in an elderly population
- Author
-
Hashemi, Hassan, Aghamirsalim, Mohamadreza, Hashemi, Alireza, and Khabazkhoob, Mehdi
- Published
- 2024
- Full Text
- View/download PDF
183. The role of magnesium oxide foliar sprays in enhancing mint (Mentha crispa L.) tolerance to cadmium stress
- Author
-
Khanchi, Soheil, Hashemi Khabir, Seyed Hamed, Hashemi Khabir, Seyed Hatef, Golmoghani Asl, Reza, and Rahimzadeh, Saeedeh
- Published
- 2024
- Full Text
- View/download PDF
184. Subfoveal choroidal thickness in a general elderly population; Tehran geriatric eye study
- Author
-
Hashemi, Alireza, Nabovati, Payam, Mortazavi, Abolghasem, Hashemi, Hassan, and Khabazkhoob, Mehdi
- Published
- 2024
- Full Text
- View/download PDF
185. The association between visual impairment and mental disorders
- Author
-
Hashemi, Alireza, Hashemi, Hassan, Jamali, Alireza, Ghasemi, Hamed, Ghazizadeh Hashemi, Fatemeh, and Khabazkhoob, Mehdi
- Published
- 2024
- Full Text
- View/download PDF
186. Gemini: A Family of Highly Capable Multimodal Models
- Author
-
Gemini Team, Anil, Rohan, Borgeaud, Sebastian, Alayrac, Jean-Baptiste, Yu, Jiahui, Soricut, Radu, Schalkwyk, Johan, Dai, Andrew M., Hauth, Anja, Millican, Katie, Silver, David, Johnson, Melvin, Antonoglou, Ioannis, Schrittwieser, Julian, Glaese, Amelia, Chen, Jilin, Pitler, Emily, Lillicrap, Timothy, Lazaridou, Angeliki, Firat, Orhan, Molloy, James, Isard, Michael, Barham, Paul R., Hennigan, Tom, Lee, Benjamin, Viola, Fabio, Reynolds, Malcolm, Xu, Yuanzhong, Doherty, Ryan, Collins, Eli, Meyer, Clemens, Rutherford, Eliza, Moreira, Erica, Ayoub, Kareem, Goel, Megha, Krawczyk, Jack, Du, Cosmo, Chi, Ed, Cheng, Heng-Tze, Ni, Eric, Shah, Purvi, Kane, Patrick, Chan, Betty, Faruqui, Manaal, Severyn, Aliaksei, Lin, Hanzhao, Li, YaGuang, Cheng, Yong, Ittycheriah, Abe, Mahdieh, Mahdis, Chen, Mia, Sun, Pei, Tran, Dustin, Bagri, Sumit, Lakshminarayanan, Balaji, Liu, Jeremiah, Orban, Andras, Güra, Fabian, Zhou, Hao, Song, Xinying, Boffy, Aurelien, Ganapathy, Harish, Zheng, Steven, Choe, HyunJeong, Weisz, Ágoston, Zhu, Tao, Lu, Yifeng, Gopal, Siddharth, Kahn, Jarrod, Kula, Maciej, Pitman, Jeff, Shah, Rushin, Taropa, Emanuel, Merey, Majd Al, Baeuml, Martin, Chen, Zhifeng, Shafey, Laurent El, Zhang, Yujing, Sercinoglu, Olcan, Tucker, George, Piqueras, Enrique, Krikun, Maxim, Barr, Iain, Savinov, Nikolay, Danihelka, Ivo, Roelofs, Becca, White, Anaïs, Andreassen, Anders, von Glehn, Tamara, Yagati, Lakshman, Kazemi, Mehran, Gonzalez, Lucas, Khalman, Misha, Sygnowski, Jakub, Frechette, Alexandre, Smith, Charlotte, Culp, Laura, Proleev, Lev, Luan, Yi, Chen, Xi, Lottes, James, Schucher, Nathan, Lebron, Federico, Rrustemi, Alban, Clay, Natalie, Crone, Phil, Kocisky, Tomas, Zhao, Jeffrey, Perz, Bartek, Yu, Dian, Howard, Heidi, Bloniarz, Adam, Rae, Jack W., Lu, Han, Sifre, Laurent, Maggioni, Marcello, Alcober, Fred, Garrette, Dan, Barnes, Megan, Thakoor, Shantanu, Austin, Jacob, Barth-Maron, Gabriel, Wong, William, Joshi, Rishabh, Chaabouni, Rahma, Fatiha, Deeni, Ahuja, Arun, Tomar, Gaurav Singh, Senter, Evan, Chadwick, Martin, Kornakov, Ilya, Attaluri, Nithya, Iturrate, Iñaki, Liu, Ruibo, Li, Yunxuan, Cogan, Sarah, Chen, Jeremy, Jia, Chao, Gu, Chenjie, Zhang, Qiao, Grimstad, Jordan, Hartman, Ale Jakse, Garcia, Xavier, Pillai, Thanumalayan Sankaranarayana, Devlin, Jacob, Laskin, Michael, Casas, Diego de Las, Valter, Dasha, Tao, Connie, Blanco, Lorenzo, Badia, Adrià Puigdomènech, Reitter, David, Chen, Mianna, Brennan, Jenny, Rivera, Clara, Brin, Sergey, Iqbal, Shariq, Surita, Gabriela, Labanowski, Jane, Rao, Abhi, Winkler, Stephanie, Parisotto, Emilio, Gu, Yiming, Olszewska, Kate, Addanki, Ravi, Miech, Antoine, Louis, Annie, Teplyashin, Denis, Brown, Geoff, Catt, Elliot, Balaguer, Jan, Xiang, Jackie, Wang, Pidong, Ashwood, Zoe, Briukhov, Anton, Webson, Albert, Ganapathy, Sanjay, Sanghavi, Smit, Kannan, Ajay, Chang, Ming-Wei, Stjerngren, Axel, Djolonga, Josip, Sun, Yuting, Bapna, Ankur, Aitchison, Matthew, Pejman, Pedram, Michalewski, Henryk, Yu, Tianhe, Wang, Cindy, Love, Juliette, Ahn, Junwhan, Bloxwich, Dawn, Han, Kehang, Humphreys, Peter, Sellam, Thibault, Bradbury, James, Godbole, Varun, Samangooei, Sina, Damoc, Bogdan, Kaskasoli, Alex, Arnold, Sébastien M. R., Vasudevan, Vijay, Agrawal, Shubham, Riesa, Jason, Lepikhin, Dmitry, Tanburn, Richard, Srinivasan, Srivatsan, Lim, Hyeontaek, Hodkinson, Sarah, Shyam, Pranav, Ferret, Johan, Hand, Steven, Garg, Ankush, Paine, Tom Le, Li, Jian, Li, Yujia, Giang, Minh, Neitz, Alexander, Abbas, Zaheer, York, Sarah, Reid, Machel, Cole, Elizabeth, Chowdhery, Aakanksha, Das, Dipanjan, Rogozińska, Dominika, Nikolaev, Vitaliy, Sprechmann, Pablo, Nado, Zachary, Zilka, Lukas, Prost, Flavien, He, Luheng, Monteiro, Marianne, Mishra, Gaurav, Welty, Chris, Newlan, Josh, Jia, Dawei, Allamanis, Miltiadis, Hu, Clara Huiyi, de Liedekerke, Raoul, Gilmer, Justin, Saroufim, Carl, Rijhwani, Shruti, Hou, Shaobo, Shrivastava, Disha, Baddepudi, Anirudh, Goldin, Alex, Ozturel, Adnan, Cassirer, Albin, Xu, Yunhan, Sohn, Daniel, Sachan, Devendra, Amplayo, Reinald Kim, Swanson, Craig, Petrova, Dessie, Narayan, Shashi, Guez, Arthur, Brahma, Siddhartha, Landon, Jessica, Patel, Miteyan, Zhao, Ruizhe, Villela, Kevin, Wang, Luyu, Jia, Wenhao, Rahtz, Matthew, Giménez, Mai, Yeung, Legg, Keeling, James, Georgiev, Petko, Mincu, Diana, Wu, Boxi, Haykal, Salem, Saputro, Rachel, Vodrahalli, Kiran, Qin, James, Cankara, Zeynep, Sharma, Abhanshu, Fernando, Nick, Hawkins, Will, Neyshabur, Behnam, Kim, Solomon, Hutter, Adrian, Agrawal, Priyanka, Castro-Ros, Alex, Driessche, George van den, Wang, Tao, Yang, Fan, Chang, Shuo-yiin, Komarek, Paul, McIlroy, Ross, Lučić, Mario, Zhang, Guodong, Farhan, Wael, Sharman, Michael, Natsev, Paul, Michel, Paul, Bansal, Yamini, Qiao, Siyuan, Cao, Kris, Shakeri, Siamak, Butterfield, Christina, Chung, Justin, Rubenstein, Paul Kishan, Agrawal, Shivani, Mensch, Arthur, Soparkar, Kedar, Lenc, Karel, Chung, Timothy, Pope, Aedan, Maggiore, Loren, Kay, Jackie, Jhakra, Priya, Wang, Shibo, Maynez, Joshua, Phuong, Mary, Tobin, Taylor, Tacchetti, Andrea, Trebacz, Maja, Robinson, Kevin, Katariya, Yash, Riedel, Sebastian, Bailey, Paige, Xiao, Kefan, Ghelani, Nimesh, Aroyo, Lora, Slone, Ambrose, Houlsby, Neil, Xiong, Xuehan, Yang, Zhen, Gribovskaya, Elena, Adler, Jonas, Wirth, Mateo, Lee, Lisa, Li, Music, Kagohara, Thais, Pavagadhi, Jay, Bridgers, Sophie, Bortsova, Anna, Ghemawat, Sanjay, Ahmed, Zafarali, Liu, Tianqi, Powell, Richard, Bolina, Vijay, Iinuma, Mariko, Zablotskaia, Polina, Besley, James, Chung, Da-Woon, Dozat, Timothy, Comanescu, Ramona, Si, Xiance, Greer, Jeremy, Su, Guolong, Polacek, Martin, Kaufman, Raphaël Lopez, Tokumine, Simon, Hu, Hexiang, Buchatskaya, Elena, Miao, Yingjie, Elhawaty, Mohamed, Siddhant, Aditya, Tomasev, Nenad, Xing, Jinwei, Greer, Christina, Miller, Helen, Ashraf, Shereen, Roy, Aurko, Zhang, Zizhao, Ma, Ada, Filos, Angelos, Besta, Milos, Blevins, Rory, Klimenko, Ted, Yeh, Chih-Kuan, Changpinyo, Soravit, Mu, Jiaqi, Chang, Oscar, Pajarskas, Mantas, Muir, Carrie, Cohen, Vered, Lan, Charline Le, Haridasan, Krishna, Marathe, Amit, Hansen, Steven, Douglas, Sholto, Samuel, Rajkumar, Wang, Mingqiu, Austin, Sophia, Lan, Chang, Jiang, Jiepu, Chiu, Justin, Lorenzo, Jaime Alonso, Sjösund, Lars Lowe, Cevey, Sébastien, Gleicher, Zach, Avrahami, Thi, Boral, Anudhyan, Srinivasan, Hansa, Selo, Vittorio, May, Rhys, Aisopos, Konstantinos, Hussenot, Léonard, Soares, Livio Baldini, Baumli, Kate, Chang, Michael B., Recasens, Adrià, Caine, Ben, Pritzel, Alexander, Pavetic, Filip, Pardo, Fabio, Gergely, Anita, Frye, Justin, Ramasesh, Vinay, Horgan, Dan, Badola, Kartikeya, Kassner, Nora, Roy, Subhrajit, Dyer, Ethan, Campos, Víctor Campos, Tomala, Alex, Tang, Yunhao, Badawy, Dalia El, White, Elspeth, Mustafa, Basil, Lang, Oran, Jindal, Abhishek, Vikram, Sharad, Gong, Zhitao, Caelles, Sergi, Hemsley, Ross, Thornton, Gregory, Feng, Fangxiaoyu, Stokowiec, Wojciech, Zheng, Ce, Thacker, Phoebe, Ünlü, Çağlar, Zhang, Zhishuai, Saleh, Mohammad, Svensson, James, Bileschi, Max, Patil, Piyush, Anand, Ankesh, Ring, Roman, Tsihlas, Katerina, Vezer, Arpi, Selvi, Marco, Shevlane, Toby, Rodriguez, Mikel, Kwiatkowski, Tom, Daruki, Samira, Rong, Keran, Dafoe, Allan, FitzGerald, Nicholas, Gu-Lemberg, Keren, Khan, Mina, Hendricks, Lisa Anne, Pellat, Marie, Feinberg, Vladimir, Cobon-Kerr, James, Sainath, Tara, Rauh, Maribeth, Hashemi, Sayed Hadi, Ives, Richard, Hasson, Yana, Noland, Eric, Cao, Yuan, Byrd, Nathan, Hou, Le, Wang, Qingze, Sottiaux, Thibault, Paganini, Michela, Lespiau, Jean-Baptiste, Moufarek, Alexandre, Hassan, Samer, Shivakumar, Kaushik, van Amersfoort, Joost, Mandhane, Amol, Joshi, Pratik, Goyal, Anirudh, Tung, Matthew, Brock, Andrew, Sheahan, Hannah, Misra, Vedant, Li, Cheng, Rakićević, Nemanja, Dehghani, Mostafa, Liu, Fangyu, Mittal, Sid, Oh, Junhyuk, Noury, Seb, Sezener, Eren, Huot, Fantine, Lamm, Matthew, De Cao, Nicola, Chen, Charlie, Mudgal, Sidharth, Stella, Romina, Brooks, Kevin, Vasudevan, Gautam, Liu, Chenxi, Chain, Mainak, Melinkeri, Nivedita, Cohen, Aaron, Wang, Venus, Seymore, Kristie, Zubkov, Sergey, Goel, Rahul, Yue, Summer, Krishnakumaran, Sai, Albert, Brian, Hurley, Nate, Sano, Motoki, Mohananey, Anhad, Joughin, Jonah, Filonov, Egor, Kępa, Tomasz, Eldawy, Yomna, Lim, Jiawern, Rishi, Rahul, Badiezadegan, Shirin, Bos, Taylor, Chang, Jerry, Jain, Sanil, Padmanabhan, Sri Gayatri Sundara, Puttagunta, Subha, Krishna, Kalpesh, Baker, Leslie, Kalb, Norbert, Bedapudi, Vamsi, Kurzrok, Adam, Lei, Shuntong, Yu, Anthony, Litvin, Oren, Zhou, Xiang, Wu, Zhichun, Sobell, Sam, Siciliano, Andrea, Papir, Alan, Neale, Robby, Bragagnolo, Jonas, Toor, Tej, Chen, Tina, Anklin, Valentin, Wang, Feiran, Feng, Richie, Gholami, Milad, Ling, Kevin, Liu, Lijuan, Walter, Jules, Moghaddam, Hamid, Kishore, Arun, Adamek, Jakub, Mercado, Tyler, Mallinson, Jonathan, Wandekar, Siddhinita, Cagle, Stephen, Ofek, Eran, Garrido, Guillermo, Lombriser, Clemens, Mukha, Maksim, Sun, Botu, Mohammad, Hafeezul Rahman, Matak, Josip, Qian, Yadi, Peswani, Vikas, Janus, Pawel, Yuan, Quan, Schelin, Leif, David, Oana, Garg, Ankur, He, Yifan, Duzhyi, Oleksii, Älgmyr, Anton, Lottaz, Timothée, Li, Qi, Yadav, Vikas, Xu, Luyao, Chinien, Alex, Shivanna, Rakesh, Chuklin, Aleksandr, Li, Josie, Spadine, Carrie, Wolfe, Travis, Mohamed, Kareem, Das, Subhabrata, Dai, Zihang, He, Kyle, von Dincklage, Daniel, Upadhyay, Shyam, Maurya, Akanksha, Chi, Luyan, Krause, Sebastian, Salama, Khalid, Rabinovitch, Pam G, M, Pavan Kumar Reddy, Selvan, Aarush, Dektiarev, Mikhail, Ghiasi, Golnaz, Guven, Erdem, Gupta, Himanshu, Liu, Boyi, Sharma, Deepak, Shtacher, Idan Heimlich, Paul, Shachi, Akerlund, Oscar, Aubet, François-Xavier, Huang, Terry, Zhu, Chen, Zhu, Eric, Teixeira, Elico, Fritze, Matthew, Bertolini, Francesco, Marinescu, Liana-Eleonora, Bölle, Martin, Paulus, Dominik, Gupta, Khyatti, Latkar, Tejasi, Chang, Max, Sanders, Jason, Wilson, Roopa, Wu, Xuewei, Tan, Yi-Xuan, Thiet, Lam Nguyen, Doshi, Tulsee, Lall, Sid, Mishra, Swaroop, Chen, Wanming, Luong, Thang, Benjamin, Seth, Lee, Jasmine, Andrejczuk, Ewa, Rabiej, Dominik, Ranjan, Vipul, Styrc, Krzysztof, Yin, Pengcheng, Simon, Jon, Harriott, Malcolm Rose, Bansal, Mudit, Robsky, Alexei, Bacon, Geoff, Greene, David, Mirylenka, Daniil, Zhou, Chen, Sarvana, Obaid, Goyal, Abhimanyu, Andermatt, Samuel, Siegler, Patrick, Horn, Ben, Israel, Assaf, Pongetti, Francesco, Chen, Chih-Wei "Louis", Selvatici, Marco, Silva, Pedro, Wang, Kathie, Tolins, Jackson, Guu, Kelvin, Yogev, Roey, Cai, Xiaochen, Agostini, Alessandro, Shah, Maulik, Nguyen, Hung, Donnaile, Noah Ó, Pereira, Sébastien, Friso, Linda, Stambler, Adam, Kuang, Chenkai, Romanikhin, Yan, Geller, Mark, Yan, ZJ, Jang, Kane, Lee, Cheng-Chun, Fica, Wojciech, Malmi, Eric, Tan, Qijun, Banica, Dan, Balle, Daniel, Pham, Ryan, Huang, Yanping, Avram, Diana, Shi, Hongzhi, Singh, Jasjot, Hidey, Chris, Ahuja, Niharika, Saxena, Pranab, Dooley, Dan, Potharaju, Srividya Pranavi, O'Neill, Eileen, Gokulchandran, Anand, Foley, Ryan, Zhao, Kai, Dusenberry, Mike, Liu, Yuan, Mehta, Pulkit, Kotikalapudi, Ragha, Safranek-Shrader, Chalence, Goodman, Andrew, Kessinger, Joshua, Globen, Eran, Kolhar, Prateek, Gorgolewski, Chris, Ibrahim, Ali, Song, Yang, Eichenbaum, Ali, Brovelli, Thomas, Potluri, Sahitya, Lahoti, Preethi, Baetu, Cip, Ghorbani, Ali, Chen, Charles, Crawford, Andy, Pal, Shalini, Sridhar, Mukund, Gurita, Petru, Mujika, Asier, Petrovski, Igor, Cedoz, Pierre-Louis, Li, Chenmei, Chen, Shiyuan, Santo, Niccolò Dal, Goyal, Siddharth, Punjabi, Jitesh, Kappaganthu, Karthik, Kwak, Chester, LV, Pallavi, Velury, Sarmishta, Choudhury, Himadri, Hall, Jamie, Shah, Premal, Figueira, Ricardo, Thomas, Matt, Lu, Minjie, Zhou, Ting, Kumar, Chintu, Jurdi, Thomas, Chikkerur, Sharat, Ma, Yenai, Yu, Adams, Kwak, Soo, Ähdel, Victor, Rajayogam, Sujeevan, Choma, Travis, Liu, Fei, Barua, Aditya, Ji, Colin, Park, Ji Ho, Hellendoorn, Vincent, Bailey, Alex, Bilal, Taylan, Zhou, Huanjie, Khatir, Mehrdad, Sutton, Charles, Rzadkowski, Wojciech, Macintosh, Fiona, Shagin, Konstantin, Medina, Paul, Liang, Chen, Zhou, Jinjing, Shah, Pararth, Bi, Yingying, Dankovics, Attila, Banga, Shipra, Lehmann, Sabine, Bredesen, Marissa, Lin, Zifan, Hoffmann, John Eric, Lai, Jonathan, Chung, Raynald, Yang, Kai, Balani, Nihal, Bražinskas, Arthur, Sozanschi, Andrei, Hayes, Matthew, Alcalde, Héctor Fernández, Makarov, Peter, Chen, Will, Stella, Antonio, Snijders, Liselotte, Mandl, Michael, Kärrman, Ante, Nowak, Paweł, Wu, Xinyi, Dyck, Alex, Vaidyanathan, Krishnan, R, Raghavender, Mallet, Jessica, Rudominer, Mitch, Johnston, Eric, Mittal, Sushil, Udathu, Akhil, Christensen, Janara, Verma, Vishal, Irving, Zach, Santucci, Andreas, Elsayed, Gamaleldin, Davoodi, Elnaz, Georgiev, Marin, Tenney, Ian, Hua, Nan, Cideron, Geoffrey, Leurent, Edouard, Alnahlawi, Mahmoud, Georgescu, Ionut, Wei, Nan, Zheng, Ivy, Scandinaro, Dylan, Jiang, Heinrich, Snoek, Jasper, Sundararajan, Mukund, Wang, Xuezhi, Ontiveros, Zack, Karo, Itay, Cole, Jeremy, Rajashekhar, Vinu, Tumeh, Lara, Ben-David, Eyal, Jain, Rishub, Uesato, Jonathan, Datta, Romina, Bunyan, Oskar, Wu, Shimu, Zhang, John, Stanczyk, Piotr, Zhang, Ye, Steiner, David, Naskar, Subhajit, Azzam, Michael, Johnson, Matthew, Paszke, Adam, Chiu, Chung-Cheng, Elias, Jaume Sanchez, Mohiuddin, Afroz, Muhammad, Faizan, Miao, Jin, Lee, Andrew, Vieillard, Nino, Park, Jane, Zhang, Jiageng, Stanway, Jeff, Garmon, Drew, Karmarkar, Abhijit, Dong, Zhe, Lee, Jong, Kumar, Aviral, Zhou, Luowei, Evens, Jonathan, Isaac, William, Irving, Geoffrey, Loper, Edward, Fink, Michael, Arkatkar, Isha, Chen, Nanxin, Shafran, Izhak, Petrychenko, Ivan, Chen, Zhe, Jia, Johnson, Levskaya, Anselm, Zhu, Zhenkai, Grabowski, Peter, Mao, Yu, Magni, Alberto, Yao, Kaisheng, Snaider, Javier, Casagrande, Norman, Palmer, Evan, Suganthan, Paul, Castaño, Alfonso, Giannoumis, Irene, Kim, Wooyeol, Rybiński, Mikołaj, Sreevatsa, Ashwin, Prendki, Jennifer, Soergel, David, Goedeckemeyer, Adrian, Gierke, Willi, Jafari, Mohsen, Gaba, Meenu, Wiesner, Jeremy, Wright, Diana Gage, Wei, Yawen, Vashisht, Harsha, Kulizhskaya, Yana, Hoover, Jay, Le, Maigo, Li, Lu, Iwuanyanwu, Chimezie, Liu, Lu, Ramirez, Kevin, Khorlin, Andrey, Cui, Albert, LIN, Tian, Wu, Marcus, Aguilar, Ricardo, Pallo, Keith, Chakladar, Abhishek, Perng, Ginger, Abellan, Elena Allica, Zhang, Mingyang, Dasgupta, Ishita, Kushman, Nate, Penchev, Ivo, Repina, Alena, Wu, Xihui, van der Weide, Tom, Ponnapalli, Priya, Kaplan, Caroline, Simsa, Jiri, Li, Shuangfeng, Dousse, Olivier, Piper, Jeff, Ie, Nathan, Pasumarthi, Rama, Lintz, Nathan, Vijayakumar, Anitha, Andor, Daniel, Valenzuela, Pedro, Lui, Minnie, Paduraru, Cosmin, Peng, Daiyi, Lee, Katherine, Zhang, Shuyuan, Greene, Somer, Nguyen, Duc Dung, Kurylowicz, Paula, Hardin, Cassidy, Dixon, Lucas, Janzer, Lili, Choo, Kiam, Feng, Ziqiang, Zhang, Biao, Singhal, Achintya, Du, Dayou, McKinnon, Dan, Antropova, Natasha, Bolukbasi, Tolga, Keller, Orgad, Reid, David, Finchelstein, Daniel, Raad, Maria Abi, Crocker, Remi, Hawkins, Peter, Dadashi, Robert, Gaffney, Colin, Franko, Ken, Bulanova, Anna, Leblond, Rémi, Chung, Shirley, Askham, Harry, Cobo, Luis C., Xu, Kelvin, Fischer, Felix, Xu, Jun, Sorokin, Christina, Alberti, Chris, Lin, Chu-Cheng, Evans, Colin, Dimitriev, Alek, Forbes, Hannah, Banarse, Dylan, Tung, Zora, Omernick, Mark, Bishop, Colton, Sterneck, Rachel, Jain, Rohan, Xia, Jiawei, Amid, Ehsan, Piccinno, Francesco, Wang, Xingyu, Banzal, Praseem, Mankowitz, Daniel J., Polozov, Alex, Krakovna, Victoria, Brown, Sasha, Bateni, MohammadHossein, Duan, Dennis, Firoiu, Vlad, Thotakuri, Meghana, Natan, Tom, Geist, Matthieu, Girgin, Ser tan, Li, Hui, Ye, Jiayu, Roval, Ofir, Tojo, Reiko, Kwong, Michael, Lee-Thorp, James, Yew, Christopher, Sinopalnikov, Danila, Ramos, Sabela, Mellor, John, Sharma, Abhishek, Wu, Kathy, Miller, David, Sonnerat, Nicolas, Vnukov, Denis, Greig, Rory, Beattie, Jennifer, Caveness, Emily, Bai, Libin, Eisenschlos, Julian, Korchemniy, Alex, Tsai, Tomy, Jasarevic, Mimi, Kong, Weize, Dao, Phuong, Zheng, Zeyu, Liu, Frederick, Zhu, Rui, Teh, Tian Huey, Sanmiya, Jason, Gladchenko, Evgeny, Trdin, Nejc, Toyama, Daniel, Rosen, Evan, Tavakkol, Sasan, Xue, Linting, Elkind, Chen, Woodman, Oliver, Carpenter, John, Papamakarios, George, Kemp, Rupert, Kafle, Sushant, Grunina, Tanya, Sinha, Rishika, Talbert, Alice, Wu, Diane, Owusu-Afriyie, Denese, Thornton, Chloe, Pont-Tuset, Jordi, Narayana, Pradyumna, Li, Jing, Fatehi, Saaber, Wieting, John, Ajmeri, Omar, Uria, Benigno, Ko, Yeongil, Knight, Laura, Héliou, Amélie, Niu, Ning, Gu, Shane, Pang, Chenxi, Li, Yeqing, Levine, Nir, Stolovich, Ariel, Santamaria-Fernandez, Rebeca, Goenka, Sonam, Yustalim, Wenny, Strudel, Robin, Elqursh, Ali, Deck, Charlie, Lee, Hyo, Li, Zonglin, Levin, Kyle, Hoffmann, Raphael, Holtmann-Rice, Dan, Bachem, Olivier, Arora, Sho, Koh, Christy, Yeganeh, Soheil Hassas, Põder, Siim, Tariq, Mukarram, Sun, Yanhua, Ionita, Lucian, Seyedhosseini, Mojtaba, Tafti, Pouya, Liu, Zhiyu, Gulati, Anmol, Liu, Jasmine, Ye, Xinyu, Chrzaszcz, Bart, Wang, Lily, Sethi, Nikhil, Li, Tianrun, Brown, Ben, Singh, Shreya, Fan, Wei, Parisi, Aaron, Stanton, Joe, Koverkathu, Vinod, Choquette-Choo, Christopher A., Li, Yunjie, Lu, TJ, Shroff, Prakash, Varadarajan, Mani, Bahargam, Sanaz, Willoughby, Rob, Gaddy, David, Desjardins, Guillaume, Cornero, Marco, Robenek, Brona, Mittal, Bhavishya, Albrecht, Ben, Shenoy, Ashish, Moiseev, Fedor, Jacobsson, Henrik, Ghaffarkhah, Alireza, Rivière, Morgane, Walton, Alanna, Crepy, Clément, Parrish, Alicia, Zhou, Zongwei, Farabet, Clement, Radebaugh, Carey, Srinivasan, Praveen, van der Salm, Claudia, Fidjeland, Andreas, Scellato, Salvatore, Latorre-Chimoto, Eri, Klimczak-Plucińska, Hanna, Bridson, David, de Cesare, Dario, Hudson, Tom, Mendolicchio, Piermaria, Walker, Lexi, Morris, Alex, Mauger, Matthew, Guseynov, Alexey, Reid, Alison, Odoom, Seth, Loher, Lucia, Cotruta, Victor, Yenugula, Madhavi, Grewe, Dominik, Petrushkina, Anastasia, Duerig, Tom, Sanchez, Antonio, Yadlowsky, Steve, Shen, Amy, Globerson, Amir, Webb, Lynette, Dua, Sahil, Li, Dong, Bhupatiraju, Surya, Hurt, Dan, Qureshi, Haroon, Agarwal, Ananth, Shani, Tomer, Eyal, Matan, Khare, Anuj, Belle, Shreyas Rammohan, Wang, Lei, Tekur, Chetan, Kale, Mihir Sanjay, Wei, Jinliang, Sang, Ruoxin, Saeta, Brennan, Liechty, Tyler, Sun, Yi, Zhao, Yao, Lee, Stephan, Nayak, Pandu, Fritz, Doug, Vuyyuru, Manish Reddy, Aslanides, John, Vyas, Nidhi, Wicke, Martin, Ma, Xiao, Eltyshev, Evgenii, Martin, Nina, Cate, Hardie, Manyika, James, Amiri, Keyvan, Kim, Yelin, Xiong, Xi, Kang, Kai, Luisier, Florian, Tripuraneni, Nilesh, Madras, David, Guo, Mandy, Waters, Austin, Wang, Oliver, Ainslie, Joshua, Baldridge, Jason, Zhang, Han, Pruthi, Garima, Bauer, Jakob, Yang, Feng, Mansour, Riham, Gelman, Jason, Xu, Yang, Polovets, George, Liu, Ji, Cai, Honglong, Chen, Warren, Sheng, XiangHai, Xue, Emily, Ozair, Sherjil, Angermueller, Christof, Li, Xiaowei, Sinha, Anoop, Wang, Weiren, Wiesinger, Julia, Koukoumidis, Emmanouil, Tian, Yuan, Iyer, Anand, Gurumurthy, Madhu, Goldenson, Mark, Shah, Parashar, Blake, MK, Yu, Hongkun, Urbanowicz, Anthony, Palomaki, Jennimaria, Fernando, Chrisantha, Durden, Ken, Mehta, Harsh, Momchev, Nikola, Rahimtoroghi, Elahe, Georgaki, Maria, Raul, Amit, Ruder, Sebastian, Redshaw, Morgan, Lee, Jinhyuk, Zhou, Denny, Jalan, Komal, Li, Dinghua, Hechtman, Blake, Schuh, Parker, Nasr, Milad, Milan, Kieran, Mikulik, Vladimir, Franco, Juliana, Green, Tim, Nguyen, Nam, Kelley, Joe, Mahendru, Aroma, Hu, Andrea, Howland, Joshua, Vargas, Ben, Hui, Jeffrey, Bansal, Kshitij, Rao, Vikram, Ghiya, Rakesh, Wang, Emma, Ye, Ke, Sarr, Jean Michel, Preston, Melanie Moranski, Elish, Madeleine, Li, Steve, Kaku, Aakash, Gupta, Jigar, Pasupat, Ice, Juan, Da-Cheng, Someswar, Milan, M., Tejvi, Chen, Xinyun, Amini, Aida, Fabrikant, Alex, Chu, Eric, Dong, Xuanyi, Muthal, Amruta, Buthpitiya, Senaka, Jauhari, Sarthak, Khandelwal, Urvashi, Hitron, Ayal, Ren, Jie, Rinaldi, Larissa, Drath, Shahar, Dabush, Avigail, Jiang, Nan-Jiang, Godhia, Harshal, Sachs, Uli, Chen, Anthony, Fan, Yicheng, Taitelbaum, Hagai, Noga, Hila, Dai, Zhuyun, Wang, James, Hamer, Jenny, Ferng, Chun-Sung, Elkind, Chenel, Atias, Aviel, Lee, Paulina, Listík, Vít, Carlen, Mathias, van de Kerkhof, Jan, Pikus, Marcin, Zaher, Krunoslav, Müller, Paul, Zykova, Sasha, Stefanec, Richard, Gatsko, Vitaly, Hirnschall, Christoph, Sethi, Ashwin, Xu, Xingyu Federico, Ahuja, Chetan, Tsai, Beth, Stefanoiu, Anca, Feng, Bo, Dhandhania, Keshav, Katyal, Manish, Gupta, Akshay, Parulekar, Atharva, Pitta, Divya, Zhao, Jing, Bhatia, Vivaan, Bhavnani, Yashodha, Alhadlaq, Omar, Li, Xiaolin, Danenberg, Peter, Tu, Dennis, Pine, Alex, Filippova, Vera, Ghosh, Abhipso, Limonchik, Ben, Urala, Bhargava, Lanka, Chaitanya Krishna, Clive, Derik, Li, Edward, Wu, Hao, Hongtongsak, Kevin, Li, Ianna, Thakkar, Kalind, Omarov, Kuanysh, Majmundar, Kushal, Alverson, Michael, Kucharski, Michael, Patel, Mohak, Jain, Mudit, Zabelin, Maksim, Pelagatti, Paolo, Kohli, Rohan, Kumar, Saurabh, Kim, Joseph, Sankar, Swetha, Shah, Vineet, Ramachandruni, Lakshmi, Zeng, Xiangkai, Bariach, Ben, Weidinger, Laura, Vu, Tu, Andreev, Alek, He, Antoine, Hui, Kevin, Kashem, Sheleem, Subramanya, Amar, Hsiao, Sissie, Hassabis, Demis, Kavukcuoglu, Koray, Sadovsky, Adam, Le, Quoc, Strohman, Trevor, Wu, Yonghui, Petrov, Slav, Dean, Jeffrey, and Vinyals, Oriol
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI.
- Published
- 2023
187. AutoVisual Fusion Suite: A Comprehensive Evaluation of Image Segmentation and Voice Conversion Tools on HuggingFace Platform
- Author
-
Hashemi, Amirreza
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
This study presents a comprehensive evaluation of tools available on the HuggingFace platform for two pivotal applications in artificial intelligence: image segmentation and voice conversion. The primary objective was to identify the top three tools within each category and subsequently install and configure these tools on Linux systems. We leveraged the power of pre-trained segmentation models such as SAM and DETR Model with ResNet-50 backbone for image segmentation, and the so-vits-svc-fork model for voice conversion. This paper delves into the methodologies and challenges encountered during the implementation process, and showcases the successful combination of video segmentation and voice conversion in a unified project named AutoVisual Fusion Suite., Comment: 27 pages, 21 figures
- Published
- 2023
188. Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
- Author
-
Hashemi, Baran and Krause, Claudius
- Subjects
Physics - Instrumentation and Detectors ,Computer Science - Machine Learning ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Physics - Data Analysis, Statistics and Probability - Abstract
In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed.The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development., Comment: v2: Accepted in Reviews in Physics
- Published
- 2023
- Full Text
- View/download PDF
189. Predicting Bone Degradation Using Vision Transformer and Synthetic Cellular Microstructures Dataset
- Author
-
Hashemi, Mohammad Saber and Sheidaei, Azadeh
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition ,Physics - Medical Physics - Abstract
Bone degradation, especially for astronauts in microgravity conditions, is crucial for space exploration missions since the lower applied external forces accelerate the diminution in bone stiffness and strength substantially. Although existing computational models help us understand this phenomenon and possibly restrict its effect in the future, they are time-consuming to simulate the changes in the bones, not just the bone microstructures, of each individual in detail. In this study, a robust yet fast computational method to predict and visualize bone degradation has been developed. Our deep-learning method, TransVNet, can take in different 3D voxelized images and predict their evolution throughout months utilizing a hybrid 3D-CNN-VisionTransformer autoencoder architecture. Because of limited available experimental data and challenges of obtaining new samples, a digital twin dataset of diverse and initial bone-like microstructures was generated to train our TransVNet on the evolution of the 3D images through a previously developed degradation model for microgravity., Comment: 8 pages, 5 figures
- Published
- 2023
190. WATonoBus: Field-Tested All-Weather Autonomous Shuttle Technology
- Author
-
Bhatt, Neel P., Zhang, Ruihe, Ning, Minghao, Alghooneh, Ahmad Reza, Sun, Joseph, Panahandeh, Pouya, Mohammadbagher, Ehsan, Ecclestone, Ted, MacCallum, Ben, Hashemi, Ehsan, and Khajepour, Amir
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
All-weather autonomous vehicle operation poses significant challenges, encompassing modules from perception and decision-making to path planning and control. The complexity arises from the need to address adverse weather conditions such as rain, snow, and fog across the autonomy stack. Conventional model-based single-module approaches often lack holistic integration with upstream or downstream tasks. We tackle this problem by proposing a multi-module and modular system architecture with considerations for adverse weather across the perception level, through features such as snow covered curb detection, to decision-making and safety monitoring. Through daily weekday service on the WATonoBus platform for almost two years, we demonstrate that our proposed approach is capable of addressing adverse weather conditions and provide valuable insights from edge cases observed during operation., Comment: 8 pages, 10 figures. This work has been submitted to the ITSC for possible publication
- Published
- 2023
191. Hybrid Controller for Robot Manipulators in Task-Space with Visual-Inertial Feedback
- Author
-
Hashemi, Seyed Hamed and Mattila, Jouni
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper presents a visual-inertial-based control strategy to address the task space control problem of robot manipulators. To this end, an observer-based hybrid controller is employed to control end-effector motion. In addition, a hybrid observer is introduced for a visual-inertial navigation system to close the control loop directly at the Cartesian space by estimating the end-effector pose. Accordingly, the robot tip is equipped with an inertial measurement unit (IMU) and a stereo camera to provide task-space feedback information for the proposed observer. It is demonstrated through the Lyapunov stability theorem that the resulting closed-loop system under the proposed observer-based controller is globally asymptotically stable. Besides this notable merit (global asymptotic stability), the proposed control method eliminates the need to compute inverse kinematics and increases trajectory tracking accuracy in task-space. The effectiveness and accuracy of the proposed control scheme are evaluated through computer simulations, where the proposed control structure is applied to a 6 degrees-of-freedom long-reach hydraulic robot manipulator.
- Published
- 2023
192. A molecular dynamics simulation study of thermal conductivity of plumbene
- Author
-
Mohammadi, Rafat, Karimi, Behrad, Kieffer, John, and Hashemi, Daniel
- Subjects
Condensed Matter - Materials Science ,Physics - Computational Physics - Abstract
We investigate the thermal conductivity of plumbene using molecular dynamics simulations, overcoming existing limitations by optimizing the parameters of Tersoff and Stillinger-Weber potentials via artificial neural networks. Our findings indicate that at room temperature, the thermal conductivity of a 1050 A* 300 A plumbene sheet is approximately 8 W/m.K, significantly lower (23%) than that of bulk lead. Our analysis elucidates that thermal conductivity is enhanced by increased sample length, while it is reduced by temperature. Moreover, plumbene samples with zigzag edges display superior thermal conductivity compared to those with armchair edges. In addition, the thermal conductivity of plumbene exhibits an increase at low tensile strains, whereas it decreases as the strains become larger. This investigation provides crucial insights into the thermal conductivity behavior of plumbene under varying conditions., Comment: 24 pages, 8 figures, to appear in Physical Chemistry Chemical Physics (PCCP)
- Published
- 2023
193. Optimal Configuration of Reconfigurable Intelligent Surfaces with Arbitrary Discrete Phase Shifts
- Author
-
Hashemi, Seyedkhashayar, Jiang, Hai, and Ardakani, Masoud
- Subjects
Computer Science - Information Theory ,Electrical Engineering and Systems Science - Signal Processing - Abstract
We address the reflection optimization problem for a reconfigurable intelligent surface (RIS), where the RIS elements feature a set of non-uniformly spaced discrete phase shifts. This is motivated by the actual behavior of practical RIS elements, where it is shown that a uniform phase shift assumption is not realistic. A problem is formulated to find the optimal refection amplitudes and reflection phase shifts of the RIS elements such that the channel capacity of the target user is maximized. We first prove that in the optimal configuration, each RIS element is either turned off or operates at maximum amplitude. We then develop a method that finds the optimal reflection amplitudes and phases with complexity linear in the number of RIS elements. Some new and interesting insight into the reflection optimization problem is also provided.
- Published
- 2023
194. AGNES: Abstraction-guided Framework for Deep Neural Networks Security
- Author
-
Dhonthi, Akshay, Eiermann, Marcello, Hahn, Ernst Moritz, and Hashemi, Vahid
- Subjects
Computer Science - Machine Learning ,Computer Science - Cryptography and Security ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Deep Neural Networks (DNNs) are becoming widespread, particularly in safety-critical areas. One prominent application is image recognition in autonomous driving, where the correct classification of objects, such as traffic signs, is essential for safe driving. Unfortunately, DNNs are prone to backdoors, meaning that they concentrate on attributes of the image that should be irrelevant for their correct classification. Backdoors are integrated into a DNN during training, either with malicious intent (such as a manipulated training process, because of which a yellow sticker always leads to a traffic sign being recognised as a stop sign) or unintentional (such as a rural background leading to any traffic sign being recognised as animal crossing, because of biased training data). In this paper, we introduce AGNES, a tool to detect backdoors in DNNs for image recognition. We discuss the principle approach on which AGNES is based. Afterwards, we show that our tool performs better than many state-of-the-art methods for multiple relevant case studies., Comment: 14 pages, 6 Figures, 4 Tables, Accepted at 25th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2024)
- Published
- 2023
- Full Text
- View/download PDF
195. Efficient Cluster Selection for Personalized Federated Learning: A Multi-Armed Bandit Approach
- Author
-
Ni, Zhou and Hashemi, Morteza
- Subjects
Computer Science - Machine Learning ,Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
Federated learning (FL) offers a decentralized training approach for machine learning models, prioritizing data privacy. However, the inherent heterogeneity in FL networks, arising from variations in data distribution, size, and device capabilities, poses challenges in user federation. Recognizing this, Personalized Federated Learning (PFL) emphasizes tailoring learning processes to individual data profiles. In this paper, we address the complexity of clustering users in PFL, especially in dynamic networks, by introducing a dynamic Upper Confidence Bound (dUCB) algorithm inspired by the multi-armed bandit (MAB) approach. The dUCB algorithm ensures that new users can effectively find the best cluster for their data distribution by balancing exploration and exploitation. The performance of our algorithm is evaluated in various cases, showing its effectiveness in handling dynamic federated learning scenarios.
- Published
- 2023
196. Two-dimensional Parameter Relationships for W UMa-type Systems Revisited
- Author
-
Poro, Atila, Paki, Ehsan, Alizadehsabegh, Ailar, Khodadadilori, Mehdi, Salehian, Selda Ranjbar, Hedayatjoo, Mahya, Hashemi, Fatemeh, Dashti, Yasaman, and Mohammadizadeh, Fatemeh
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems. In this investigation, two-dimensional (2D) relationships for P-M_V(system), P-L_1,2, M_1,2-L_1,2, and q-L_ratio were revisited. The sample used is related to 118 contact binary systems with an orbital period shorter than 0.6 days whose absolute parameters were estimated based on the Gaia Data Release 3 (DR3) parallax. We reviewed previous studies on 2D relationships and updated six parameter relationships. Therefore, Markov chain Monte Carlo (MCMC) and Machine Learning (ML) methods were used, and the outcomes were compared. We selected 22 contact binary systems from eight previous studies for comparison, which had light curve solutions using spectroscopic data. The results show that the systems are in good agreement with the results of this study., Comment: Accepted by the Research in Astronomy and Astrophysics (RAA) journal
- Published
- 2023
197. LXMERT Model Compression for Visual Question Answering
- Author
-
Hashemi, Maryam, Mahmoudi, Ghazaleh, Kodeiri, Sara, Sheikhi, Hadi, and Eetemadi, Sauleh
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
Large-scale pretrained models such as LXMERT are becoming popular for learning cross-modal representations on text-image pairs for vision-language tasks. According to the lottery ticket hypothesis, NLP and computer vision models contain smaller subnetworks capable of being trained in isolation to full performance. In this paper, we combine these observations to evaluate whether such trainable subnetworks exist in LXMERT when fine-tuned on the VQA task. In addition, we perform a model size cost-benefit analysis by investigating how much pruning can be done without significant loss in accuracy. Our experiment results demonstrate that LXMERT can be effectively pruned by 40%-60% in size with 3% loss in accuracy., Comment: To appear in The Fourth Annual West Coast NLP (WeCNLP) Summit
- Published
- 2023
198. Bottom-up dust nucleation theory in oxygen-rich evolved stars II. Magnesium and calcium aluminate clusters
- Author
-
Gobrecht, David, Hashemi, S. Rasoul, Plane, John M. C., Bromley, Stefan T., Nyman, Gunnar, and Decin, Leen
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Spinel (MgAl$_{2}$O$_{4}$) and krotite (CaAl$_{2}$O$_{4}$) are alternative candidates to alumina (Al$_2$O$_3$) as primary dust condensates in the atmospheres of oxygen-rich evolved stars. Moreover, spinel was proposed as a potential carrier of the circumstellar 13 $\mu$m feature. However, the formation of nucleating spinel clusters is challenging; in particular, the inclusion of Mg constitutes a kinetic bottleneck. We aim to understand the initial steps of cosmic dust formation (i.e. nucleation) in oxygen-rich environments using a quantum-chemical bottom-up approach. Starting with an elemental gas-phase composition, we constructed a detailed chemical-kinetic network that describes the formation and destruction of magnesium-, calcium-, and aluminium-bearing molecules as well as the smallest dust-forming (MgAl$_{2}$O$_{4}$)$_1$ and (CaAl$_{2}$O$_{4}$)$_1$ monomer clusters. Different formation scenarios with exothermic pathways were explored, including the alumina (Al$_2$O$_3$) cluster chemistry studied in Paper I of this series. The resulting extensive network was applied to two model stars, a semi-regular variable and a Mira-type star, and to different circumstellar gas trajectories, including a non-pulsating outflow and a pulsating model. We employed global optimisation techniques to find the most favourable (MgAl$_2$O$_4$)$_n$, (CaAl$_2$O$_4$)$_n$, and mixed (Mg$_x$Ca$_{(1-x)}$Al$_2$O$_4$)$_n$ isomers, with $n$=1$-$7 and x$\in$[0..1], and we used high level quantum-chemical methods to determine their potential energies. The growth of larger clusters with $n$=2$-$7 is described by the temperature-dependent Gibbs free energies.In the considered stellar outflow models, spinel clusters do not form in significant amounts. However, we find that in the Mira-type non-pulsating model CaAl$_2$O$_3$(OH)$_2$, a hydroxylated form of the calcium aluminate krotite monomer forms ..., Comment: 20 pages, 25 figures, accepted for publication in A&A
- Published
- 2023
- Full Text
- View/download PDF
199. Charged Higgs decay to $W^{\pm}H$ at a high energy lepton collider
- Author
-
Hashemi, Majid and Roushandel, Laleh
- Subjects
High Energy Physics - Phenomenology - Abstract
In this work, we present a search strategy for heavy charged Higgs boson at Compact Linear Collider (CLIC) as a future $e^+e^-$ collider. The signal is charged Higgs boson pair production in two Higgs doublet model (2HDM) followed by $H^{\pm}\to W^{\pm}H$ and $H\to b\bar{b}$. Here, $H$ denotes the heavy CP-even neutral Higgs boson of the model. The collider center of mass energy is chosen to be $\sqrt{s}=1400$ GeV as the second stage of CLIC operation. In this case, $m_{H^+}<\sqrt{s}/2$ can be explored due to the pair production. It is shown that the signal of charged Higgs in the mass range 250 GeV $
- Published
- 2023
- Full Text
- View/download PDF
200. Generalizable Error Modeling for Human Data Annotation: Evidence From an Industry-Scale Search Data Annotation Program
- Author
-
Peters, Heinrich, Hashemi, Alireza, and Rae, James
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Human-Computer Interaction - Abstract
Machine learning (ML) and artificial intelligence (AI) systems rely heavily on human-annotated data for training and evaluation. A major challenge in this context is the occurrence of annotation errors, as their effects can degrade model performance. This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks for three industry-scale ML applications (music streaming, video streaming, and mobile apps). Drawing on real-world data from an extensive search relevance annotation program, we demonstrate that errors can be predicted with moderate model performance (AUC=0.65-0.75) and that model performance generalizes well across applications (i.e., a global, task-agnostic model performs on par with task-specific models). In contrast to past research, which has often focused on predicting annotation labels from task-specific features, our model is trained to predict errors directly from a combination of task features and behavioral features derived from the annotation process, in order to achieve a high degree of generalizability. We demonstrate the usefulness of the model in the context of auditing, where prioritizing tasks with high predicted error probabilities considerably increases the amount of corrected annotation errors (e.g., 40% efficiency gains for the music streaming application). These results highlight that behavioral error detection models can yield considerable improvements in the efficiency and quality of data annotation processes. Our findings reveal critical insights into effective error management in the data annotation process, thereby contributing to the broader field of human-in-the-loop ML.
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.