151. Influence of porosity on ice dynamic behavior as assessed by spalling tests
- Author
-
Georges, David, Saletti, Dominique, Montagnat, Maurine, Forquin, Pascal, Hagenmuller, Pascal, Hébert, David, Rullier, Jean-Luc, Laboratoire sols, solides, structures - risques [Grenoble] (3SR), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Risques, Vulnérabilité des structures et comportement mécanique des matériaux (RV), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Centre d'Etudes de la Neige (CEN), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA-CESTA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), and Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,Materials Science (miscellaneous) ,02 engineering and technology ,Split-Hopkinson pressure bar ,Strain rate ,021001 nanoscience & nanotechnology ,Microstructure ,01 natural sciences ,Mechanics of Materials ,Dynamic loading ,Ultimate tensile strength ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Fracture (geology) ,Texture (crystalline) ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,Composite material ,0210 nano-technology ,Porosity ,0105 earth and related environmental sciences - Abstract
The impact of ice on structures is a strong concern, in particular for aeronautical or space crafts that are strongly damaged by the impact of atmospheric ice, and more specifically by hailstones during hailstorms. During the impact, the hailstone is submitted to a complex loading including a strong dynamic tensile component that is responsible for its fragmentation and influences the mechanical loading transmitted to the impacted structure. However, up to now, very limited work were conducted on the tensile strength of ice under dynamic loading and the microstructure influence was out the scope of most studies. In particular the presence of porosity in ice as observed in hailstones is thought to significantly affect the ice mechanical response. The aim of this paper is to investigate the role of porosity on the tensile behavior of polycrystalline ice at high strain rates. To do so, spalling tests with a Hopkinson bar apparatus were conducted on microstructures characterized by porosities with two different pore size distributions. The dynamic tensile strength was computed by the use of the so-called Novikov formula and several indicators were used to assess the quality of each test. A whole set of high porosity samples was tested and additional tests were performed on low porosity ice, expanding the existing results in the literature. The fragmentation processes occuring during the spalling tests were observed by means of an ultra high speed camera and the influence of porosity on the main fracture planes was investigated by analysing post-spalling samples with an automatic ice texture analyser and X-ray tomography. Tensile strength is shown to increase with strain rate over the range $$24\,\hbox {s}^{-1}$$ to $$120\,\hbox {s}^{-1}$$ and to decrease with increasing porosity. The presence of large porosities in the high porosity samples appear to contribute preferentially to this strength decrease. Relevant observations concerning the detected cracks, the tortuosity of crack paths and the presence of porosities on the crack surfaces seem to validate the hypothesis of porosities playing a key role for crack initiation and propagation during ice fragmentation.
- Published
- 2021