Apresentamos mapas bidimensionais (2D) para os fluxos e razões de linhas de emissão, cinemática do gás e das estrelas na região central (≈ 100 − 300 pc de raio em torno do núcleo) das galáxias Seyfert ESO428-G14, NGC7582, NGC4051 e NGC4258 a partir de dados espectroscópicos obtidos com a Unidade de Campo Integral (IFU) do instrumento GNIRS (Gemini Near-Infrared Spectrograph) e com o instrumento NIFS (Near-infrared Integral Field Spectrograph) instaladas nos telescópios Gemini. Obtivemos medidas da cinemática estelar a partir de ajustes das bandas de absorção do CO em λ ≈ 2, 3 μm por templates estelares e mapas para as distribuições e cinemática do gás a partir de ajustes de curvas gaussianas aos perfis das linhas de emissão. A alta resolução espectral dos dados ainda nos permitiu obter a “tomografia” do gás a partir de cortes ao longo dos perfis das linhas, fornecendo um mapeamento “tridimensional”. Os campos de velocidades das estrelas são dominados por rotação no disco da galáxia. Modelamos estes campos através de rotação num potencial de Plummer. O campo de velocidades de NGC4051 é bem representado pelo modelo e apresenta um potencial gravitacional bastante concentrado, atribu´ıdo ao bojo. NGC7582 apresenta algumas distorções no campo de velocidades que não são bem representadas pelo modelo, as quais podem ser atribuídas a uma barra nuclear presente nesta galáxia. Para NGC4258 tivemos que incluir, além do potencial do bojo, uma componente para o potencial gravitacional do buraco negro supermassivo, uma vez que seu raio de influência está resolvido, o que é confirmado pelo aumento do valor da dispersão de velocidades estelar (σ*) dentro de 11 pc do núcleo. Os mapas de σ* em NGC4051 e NGC7582 apresentam regiões de baixos valores imersas num bojo de maiores valores. Estes baixos valores de σ* foram atribuídos a estrelas jovens, formadas a partir de um gás frio recentemente acretado à região nuclear, as quais ainda preservam a cinemática do gás que as formou. Os campos de velocidades do gás apresentam componentes que diferem de rotação pura. Em ESO428-G14 e NGC7582 estas componentes são observadas como outflows do núcleo. Para ESO428-G14 os outflows são devido á interação entre o jato rádio e o meio interestelar (ISM) circundante. Já em NGC7582 os outflows são atribuídos a ventos do disco de acreção. Em NGC4051 observamos inflows em direção ao núcleo ao longo de braços espirais nucleares. Em geral, observamos também que o gás emissor de H2 apresenta cinemática diferente da observada para o gás ionizado – enquanto que o H2 está mais restrito ao plano das galáxias, onde componentes de rotação são importantes, o gás de maior ionização estende-se a altas latitudes galáticas, onde são mais importantes os movimentos de outflows. A partir das distribuições de fluxos e razões de linhas concluímos que a emissão de H2 observada em NGC4051 é principalmente devida a excitação por raios X oriundos do núcleo, enquanto que em ESO428-G14 o mecanismo de excitação dominante é a interação do jato rádio com o ISM. A emissão do [Fe ii] em ESO428-G14 também é produzida por choques devido ao jato rádio. Determinamos massas de H2 quente que variam de 72 a 2700 M e de Hii entre 1,4×105 e 3,9×106M, as quais são comparáveis a valores publicados na literatura. Estimamos também as taxas de outflow e de inflow para NGC7582 e NGC4051, respectivamente. Obtivemos uma taxa de outflow de MHII ≈ 6, 3 × 10−2M ano−1 para o hidrogênio ionizado e de MH2 ≈ 8, 3 × 10−5M ano−1 para o H2 quente. Para NGC4051 obtivemos uma taxa de inflow de ˙MH2 ≈ 8 × 10−5M ano−1 para o H2 quente, a qual é aproximadamente 100 vezes menor do que o valor necessário para produzir a emissão observada. Concluímos que a taxa de inflow total de gás molecular deve ser muito maior, considerando que estamos amostrando apenas uma pequena parcela do gás molecular presente na região nuclear das galáxias ativas – o gás molecular quente. A principal inovação do presente trabalho é a riqueza de detalhes com que foi mapeada a distribuição e cinemática do gás, bem como a cinemática das estrelas na região central de galáxias Seyfert, com resoluções espaciais sem precedentes na literatura. Tal resolução espacial, combinada com a alta resolução espectral, permitiram uma comparação detalhada entre os mapas de emissão em rádio com os mapas de fluxo, razão de fluxos e principalmente da cinemática “tridimensional”. Através deste trabalho foi possível, pela primeira vez em comprimentos de onda infravermelho, mapear um inflow de gás molecular em uma galáxia ativa dentro dos 300 pc. Contribuímos também para o primeiro mapeamento de inflows no ótico nestas mesmas escalas. We present two-dimensional (2D) maps for emission line fluxes and ratios, gaseous kinematics and stellar kinematics for the central regions of the Seyfert galaxies ESO428-G14, NGC7582, NGC4051 and NGC4258 using spectroscopic data obtained with the Gemini Near-Infrared Spectrograph (GNIRS) Integral Field Unit (IFU) and with the Near-infrared Integral Field Spectrograph (NIFS) at the Gemini telescopes. We have obtained measurements for the stellar kinematics by fitting the CO absorption bandheads around ≈ 2, 3 μm by stellar templates and have obtained maps for the gaseous distribution and kinematics from the fit of gaussian curves to the emission-line profiles. The high spectral resolution of the data allowed us to obtain a gaseous “tomography” by performing cuts in velocity bins along the emission line profiles, which provide a “tri-dimensional” map of the gas emission. The stellar velocity fields are dominated by rotation in the galactic disk. We have modelled these velocities by circular orbits in a Plummer potential. The velocity field of NGC4051 is well reproduced by the model and presents a highly concentrated gravitational potential, atributed to a compact stellar bulge. NGC7582 presents some distortions in its velocity field, which are not reproduced by the model and are atributed to a nuclear bar observed in this galaxy. For NGC4258 we needed to include, besides the bulge potential, the supermassive black hole potential, since its sphere of influence is resolved in our observations, what is confirmed by the increase in the stellar velocity dispersions (σ*) within 11 pc from the nucleus. The σ* maps for NGC4051 and NGC7582 present regions of low values immersed in a background of higher values. These low ∗ values were atributed to young stars, formed from cold gas recently accreted to the nuclear region, which still preserve the kinematics of the gas from which they have formed. The gaseous velocity fields present components that differ from pure rotation. For ESO428-G14 and NGC7582 these components are outflows from the nucleus. The outflows for ESO428-G14 are due to the interaction of the radio jet with the circumnuclear interstellar medium (ISM) and for NGC7582 the outflows are atributed to winds from the accretion disk. For NGC4051 we observe inflows towards the nucleus along nuclear spiral arms. We also observe that in general, the H2 emitting gas presents a distinct kinematics from that of the ionized gas – while the H2 is restricted to the galactic plane, where rotation is important, the higher ionization gas extends to high galactic latitudes, where the outflows are more important. From the flux distributions and line ratios we conclude that the H2 emission in NGC4051 is dominated by X rays heating, while for ESO428-G14 the main excitation mechanism is shocks due to the radio jet. The [Fe ii] emission observed in ESO428- G14 is also dominated by excitation by the radio jet. We have obtained masses for the hot H2 gas varying from 72 to 2700 M⊙ and for the ionized gas (Hii) varying from 1.4×105 to 3.9×106M⊙, which are in agreement with previously published values for active galaxies. We also derive thegas outflow and inflow rates for NGC7582 and NGC4051, respectively. For NGC7582 we obtained an outflow rate of MHII ≈ 6, 3 × 10−2M yr−1 for the ionized hydrogen and of MH2 ≈ 8, 3×10−5M yr−1 for the hot H2. For NGC4051 the hot H2 inflow rate is MH2 ≈ 8 × 10−5M yr−1, which is approximately 100 times smaller than the value necessary to produce the observed emission. We conclude that the total inflow rate of molecular gas must be much higher, as we are sampling only a small part of the molecular gas present in the nuclear region of the active galaxies – the hot emitting gas.