151. L-type voltage-gated calcium channel agonists mitigate hearing loss and modify ribbon synapse morphology in the zebrafish model of Usher syndrome type 1
- Author
-
Alaa Koleilat, Joseph A. Dugdale, Trace A. Christenson, Jeffrey L. Bellah, Aaron M. Lambert, Mark A. Masino, Stephen C. Ekker, and Lisa A. Schimmenti
- Subjects
zebrafish ,hair cell ,ribbon synapse ,myo7aa ,hearing loss ,Medicine ,Pathology ,RB1-214 - Abstract
The mariner (myo7aa−/−) mutant is a zebrafish model for Usher syndrome type 1 (USH1). To further characterize hair cell synaptic elements in myo7aa−/− mutants, we focused on the ribbon synapse and evaluated ultrastructure, number and distribution of immunolabeled ribbons, and postsynaptic densities. By transmission electron microscopy, we determined that myo7aa−/− zebrafish have fewer glutamatergic vesicles tethered to ribbon synapses, yet maintain a comparable ribbon area. In myo7aa−/− hair cells, immunolocalization of Ctbp2 showed fewer ribbon-containing cells in total and an altered distribution of Ctbp2 puncta compared to wild-type hair cells. myo7aa−/− mutants have fewer postsynaptic densities – as assessed by MAGUK immunolabeling – compared to wild-type zebrafish. We quantified the circular swimming behavior of myo7aa−/− mutant fish and measured a greater turning angle (absolute smooth orientation). It has previously been shown that L-type voltage-gated calcium channels are necessary for ribbon localization and occurrence of postsynaptic density; thus, we hypothesized and observed that L-type voltage-gated calcium channel agonists change behavioral and synaptic phenotypes in myo7aa−/− mutants in a drug-specific manner. Our results indicate that treatment with L-type voltage-gated calcium channel agonists alter hair cell synaptic elements and improve behavioral phenotypes of myo7aa−/− mutants. Our data support that L-type voltage-gated calcium channel agonists induce morphological changes at the ribbon synapse – in both the number of tethered vesicles and regarding the distribution of Ctbp2 puncta – shift swimming behavior and improve acoustic startle response.
- Published
- 2020
- Full Text
- View/download PDF