151. GLaMST: grow lineages along minimum spanning tree for b cell receptor sequencing data
- Author
-
Xingyu Yang, Christopher M. Tipton, Matthew C. Woodruff, Enlu Zhou, F. Eun-Hyung Lee, Inãki Sanz, and Peng Qiu
- Subjects
B cell receptor gene ,Lineage tree ,Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background B cell affinity maturation enables B cells to generate high-affinity antibodies. This process involves somatic hypermutation of B cell immunoglobulin receptor (BCR) genes and selection by their ability to bind antigens. Lineage trees are used to describe this microevolution of B cell immunoglobulin genes. In a lineage tree, each node is one BCR sequence that mutated from the germinal center and each directed edge represents a single base mutation, insertion or deletion. In BCR sequencing data, the observed data only contains a subset of BCR sequences in this microevolution process. Therefore, reconstructing the lineage tree from experimental data requires algorithms to build the tree based on partially observed tree nodes. Results We developed a new algorithm named Grow Lineages along Minimum Spanning Tree (GLaMST), which efficiently reconstruct the lineage tree given observed BCR sequences that correspond to a subset of the tree nodes. Through comparison using simulated and real data, GLaMST outperforms existing algorithms in simulations with high rates of mutation, insertion and deletion, and generates lineage trees with smaller size and closer to ground truth according to tree features that highly correlated with selection pressure. Conclusions GLaMST outperforms state-of-art in reconstruction of the BCR lineage tree in both efficiency and accuracy. Integrating it into existing BCR sequencing analysis frameworks can significant improve lineage tree reconstruction aspect of the analysis.
- Published
- 2020
- Full Text
- View/download PDF