151. A Finite Precision Block Floating Point Treatment To Direct Form, Cascaded And Parallel Fir Digital Filters
- Author
-
Abhijit Mitra
- Subjects
Cascade structure ,Block floating point arithmetic ,Parallel structure ,Roundoff error ,Finite impulse response digital filters - Abstract
This paper proposes an efficient finite precision block floating point (BFP) treatment to the fixed coefficient finite impulse response (FIR) digital filter. The treatment includes effective implementation of all the three forms of the conventional FIR filters, namely, direct form, cascaded and par- allel, and a roundoff error analysis of them in the BFP format. An effective block formatting algorithm together with an adaptive scaling factor is pro- posed to make the realizations more simple from hardware view point. To this end, a generic relation between the tap weight vector length and the input block length is deduced. The implementation scheme also emphasises on a simple block exponent update technique to prevent overflow even during the block to block transition phase. The roundoff noise is also investigated along the analogous lines, taking into consideration these implementational issues. The simulation results show that the BFP roundoff errors depend on the sig- nal level almost in the same way as floating point roundoff noise, resulting in approximately constant signal to noise ratio over a relatively large dynamic range., {"references":["C. W. Barnes and S. Shinnaka, \"Finite Word Effects in Block-state\nRealizations of Fixed Point Digital Filters,\" IEEE Trans. Circuits Syst.,\nvol CAS-27, pp. 345-349, May 1980","P. H. Bauer, \"Absolute Error Bounds for Block-Floating-Point Direct-\nForm Digital Filters,\" IEEE Trans. Signal Processing, vol. 43, no. 8,\npp. 1994-1996, Aug. 1995.","R. N. Bracewell, \"The Fast Hartley Transform,\" Proc. IEEE, vol. 72,\nno. 8, pp. 1010-1018, Aug. 1984.","C. Caraiscos and B. Liu, \"A Roundoff Error Analysis of the LMS\nAdaptive Algorithm,\" IEEE Trans. Acoust., Speech, Signal Processing,\nvol. ASSP-32, no. 1, pp. 34-41, Feb. 1984.","C. Caraiscos, \"Implementation Issues in Digital Signal Processing,\"\nPh.D. dissertation, Princeton University, Jan. 1984.","D. S. K. Chan and L. R. Rabiner, \"Analysis of Quantization Errors in the\nDirect Form for Finite Impulse Response Digital Filters,\" IEEE Trans.\nAudio Electroaccoust., vol. AU-21, no. 4, pp. 354-366, Aug. 1973.","D. S. K. Chan and L. R. Rabiner, \"Theory of Roundoff Noise in Cascade\nRealizations of Finite Impulse Response Digital Filters,\" Bell Syst. Tech.\nJ., vol. 52, no. 3, pp. 329-345, Mar. 1973.","D. S. K. Chan and L. R. Rabiner, \"An Algorithm for Minimizing Round-\noff Noise in Cascade Realizations of Finite Impulse Response Digital\nFilters,\" Bell Syst. Tech. J., vol. 52, no. 3, pp. 347-385, Mar. 1973.","D. J. DeFatta, J. G. Lucas andW. S. Hodgkiss, Digital Signal Process-\ning: A System Design Approach. New York: Wiley, 1990.\n[10] P. M. Ebert, J. E. Mazo, and M. G. Taylor, \"Overflow oscillations in\ndigital filters,\" Bell Sys. Tech. J., vol. 48, pp. 2999{3020, 1969.\n[11] A. Erickson and B. Fagin, \"Calculating FHT in Hardware,\" IEEE Trans.\nSignal Processing, vol. 40, no. 4, pp. 1341-1353, June 1992.\n[12] B. Gold and C. M. Rader, Digital Processing of Signals. New York:\nMcgraw-Hill, 1969.\n[13] J. R. Heath, H. T. Nagle, Jr., and S. G. Shiva, \"Realization of Digi-\ntal Filters using Input-Scaled Floating-Point Arithmetic,\" IEEE Trans.\nAcoust., Speech, Signal Processing, vol. ASSP-27, no. 5, pp. 469-477,\nOct. 1979.\n[14] P. Henrici, Partial Fractions, volume 1 of \"Applied and Computational\nComplex Analysis,\" Chapter 7. Wiley, 1974.\n[15] O. Hermann and H. W. Schuessler, \"On the Accuracy Problem in the\nDesign of Nonrecursive Digital Filters,\" Arch. Elek. Ubertragung, vol.\n24, pp. 525-526, 1970.\n[16] L. B. Jackson, \"Beginnings: The First Hardware Digital Filters,\" IEEE\nSignal Proc. Magazine, vol. 21, no. 6, pp. 55-81, Nov. 2004.\n[17] L. B. Jackson, Digital Filters and Signal Processing, 3rd ed. Boston,\nMA: Kluwer, 1996.\n[18] L. B. Jackson, \"Roundoff-Noise Analysis for Fixed-Point Digital Filters\nRealized in Cascade or Parallel Form,\" IEEE Trans. Audio Electroa-\ncoust., vol. AE-18, no. 2, pp. 107-122, June 1970.\n[19] L. B. Jackson, J. F. Kaiser and H. S. McDonald, \"An Approach to the\nImplementation of Digital Filters,\" IEEE Trans. Audio Electroacoust.,\nvol. AE-16, no. 3, pp. 413-421, Sept. 1968.\n[20] T. Kailath, \"A View of Three Decades of Linear Filtering Theory,\" IEEE\nTrans. Inform. Theory, vol. IT-20, pp. 146-181, March 1974.\n[21] J. F. Kaiser, \"Digital Filters,\" in System Analysis by Digital Computer,\nJ.F Kaiserand F.F Kuo, Eds New York: wiley, 1966, pp. 218-285\n[22] K. Kalliojarvi and J.Astola, \"Roundoff Errors in Block-Floating-Point\nSystems,\" IEEE Trans. Signal Processing, vol. 44, no. 4, pp. 783-790,\nApril 1996.\n[23] D. M. Kodek, \"Performance Limit of Finite Wordlength FIR Digital\nFJuilltyer2s0,\"05IE. EE Trans. Signal Processing, vol. 53, no. 7, pp. 2462-2469,\n[24] D. M. Kodek, \"Design of Optimal Finite Wordlength FIR Digital Filters\nusing Integer Programming Techniques,\" IEEE Trans. Acoust., Speech,\nSignal Processing, vol. ASSP-28, June 1980.\n[25] W.Li and A.M. Peterson \"Block Z Transform and Its Application\nto FIR Filtering,\" IEEE Trans. Signal Processing, vol. 39, no. 10, pp.\n2335-2343, Oct. 1991.\n[26] Y. C. Lim and S. R. Parker, \"Discrete coefficient FIR digital filter design\nbased upon an LMS criteria,\" IEEE Trans. Circuits Syst., vol. CAS-30,\n[27] Ypp. .C7.2L3i-m73a9n,dOSc.t.R1.9P8a3r.ker, \"FIR filter design over a discrete powers of\ntwo coefficient space,\" IEEE Trans. Acoust., Speech, Signal Processing,\nvol. ASSP-31, pp. 583-590, June 1983.\n[28] B. Liu and T. Kaneko, \"Error Analysis of Digital Filters Realized in\nFloating-Point Arithmetic,\" IEEE Proc., vol. 57, pp. 1735-1747, Oct.\n1969.\n[29] M. Martinez-Peiro et. al. (2002, February). FPGA Based\nFIR Filters using Distributed Arithmetic (Online). Available:\nhttp://www.techonline.com/community/ed resource/feature article/20135.\n[30] A. Mitra, et. al., \"A Block Floating Point Treatment to the LMS Algo-\nrithm: Efficient Realization and Roundoff Error Analysis,\" IEEE Trans.\nSignal Processing, vol. 53, no. 12, pp. 4536-4544, Dec. 2005.\n[31] A. Mitra, \"On Finite Wordlength Properties of Block Floating Point\nArithmetic,\" Int. J. Signal Processing, vol. 2, no. 2, pp. 120-125, July\n2005.\n[32] A. Mitra, \"A New Block-based NLMS Algorithm and Its Realization\nin Block Floating Point Format,\" Int. J. Info. Tech., vol. 1, no. 4, pp.\n244-248, Dec. 2004.\n[33] A. Mitra, \"A New Way of Implementation and Associated Round-\noff Noise Analysis of Fixed Coefficient FIR Digital Filters Employing\nBlock-Floating-Point Arithmetic,\" in Proc. 3rd IEEE Benelux Signal\nProcessing Symposium (SPS 2002), Leuven, Belgium, March 21-22,\n2002, pp. 113-116.\n[34] S. K. Mitra, Digital Signal Processing: A Computer-based Approach.\nNew York: Mcgraw-Hill, 2001.\n[35] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.\nEnglewood Cliffs, NJ: Prentice-Hall, 1989.\n[36] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. En-\nglewood Cliffs, NJ: Prentice-Hall, 1975.\n[37] A. V. Oppenheim and C. Weinstein, \"Effects of finite register length in\ndigital filtering and the fast Fourier transform,\" Proc. IEEE, vol. 60, pp.\n957-976, Aug. 1972.\n[38] A. V. Oppenheim, \"Realization of digital filters using block floating\npoint arithmetic,\" IEEE Trans. Audio Electroacoust., vol. AE-18, no. 2,\npp. 130-136, June 1970.\n[39] L. R. Rabiner and B. Gold, Theory and Applications of Digital Signal\nProcessing. Englewood Cliffs, NJ: Prentice-Hall, 1976.\n[40] L. R. Rabiner, \"The Design of Finite Impulse Response Digital Filters\nusing Linear Programming Techniques,\" Bell Syst. Tech. J., vol. 21, pp.\n1177-1198, July-Aug. 1972.\n[41] K. R. Ralev and P. H. Bauer, \"Realization of Block Floating Point\nDigital Filters and Application to Block Implementations,\" IEEE Trans.\nSignal Processing, vol. 47, no. 4, pp. 1076-1086, April 1999.\n[42] S. Sridharan and G. Dickman, \"Block floating point implementation of\ndigital filters using the DSP56000,\" Microprocess. Microsyst., vol. 12,\nno. 6, pp. 299-308, July-Aug. 1988.\n[43] F. J. Taylor, \"Block Floating Point Distributed Filters,\" IEEE Trans.\nCircuits Syst., vol. CAS-31, pp. 300-304, Mar. 1984.\n[44] M. Waters et. al., \"Parallel Interconnection of Cascaded Subfilters: Im-\nproved Performance at High Order,\" in Proc. IEEE Int. Symp. Circuits,\nSyst. (ISCAS), Hong Kong, June 9-12, 1997, pp. 2216-2219.\n[45] C. Weinstein and A. V. Oppenheim, \"A Comparison of Roundoff Noise\nin Fixed Point and Floating Point Digital Filter Realizations,\" Proc.\nIEEE, vol. 57, pp. 1181-1183, Aug. 1969.\n[46] C. Weinstein, \"Quantization Effects in Frequency Sampling Filters,\"\nNEREM Record, 222, New York: Lewis Winner, 1968."]}
- Published
- 2007
- Full Text
- View/download PDF