201. In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product
- Author
-
Aymerick Eudes, Khanh M. Vuu, Edward E. K. Baidoo, Patrick M. Shih, Bashar Amer, Henrik Vibe Scheller, and Chien-Yuan Lin
- Subjects
0106 biological sciences ,Polyesters ,Arabidopsis ,Biomass ,Lignocellulosic biomass ,Bioengineering ,macromolecular substances ,Lignin ,01 natural sciences ,Applied Microbiology and Biotechnology ,Metabolic engineering ,03 medical and health sciences ,chemistry.chemical_compound ,Bioenergy ,010608 biotechnology ,Shikimate pathway ,Comamonas testosteroni ,030304 developmental biology ,0303 health sciences ,biology ,Chemistry ,food and beverages ,biology.organism_classification ,Biochemistry ,Pyrones ,Fermentation ,Biotechnology - Abstract
2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable intermediate that naturally occurs during microbial degradation of lignin by bacteria, represents a promising building block for diverse biomaterials and polyesters such as biodegradable plastics. The lack of a chemical synthesis method has hindered large-scale utilization of PDC and metabolic engineering approaches for its biosynthesis have recently emerged. In this study, we demonstrate a strategy for the production of PDC via manipulation of the shikimate pathway using plants as green factories. In tobacco leaves, we first showed that transient expression of bacterial feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB) produced high titers of protocatechuate (PCA), which was in turn efficiently converted into PDC upon co-expression of PCA 4,5-dioxygenase (PmdAB) and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (PmdC) derived from Comamonas testosteroni. We validated that stable expression of AroG in Arabidopsis in a genetic background containing the QsuB gene enhanced PCA content in plant biomass, presumably via an increase of the carbon flux through the shikimate pathway. Further, introducing AroG and the PDC biosynthetic genes (PmdA, PmdB, and PmdC) into the Arabidopsis QsuB background, or introducing the five genes (AroG, QsuB, PmdA, PmdB, and PmdC) stacked on a single construct into wild-type plants, resulted in PDC titers of ~1% and ~3% dry weight in plant biomass, respectively. Consistent with previous studies of plants expressing QsuB, all PDC producing lines showed strong reduction in lignin content in stems. This low lignin trait was accompanied with improvements of biomass saccharification efficiency due to reduced cell wall recalcitrance to enzymatic degradation. Importantly, most transgenic lines showed no reduction in biomass yields. Therefore, we conclude that engineering plants with the proposed de-novo PDC pathway provides an avenue to enrich biomass with a value-added co-product while simultaneously improving biomass quality for the supply of fermentable sugars. Implementing this strategy into bioenergy crops has the potential to support existing microbial fermentation approaches that exploit lignocellulosic biomass feedstocks for PDC production.
- Published
- 2021
- Full Text
- View/download PDF