290,015 results on '"A Hahn"'
Search Results
202. The interplay between polygenic score for tumor necrosis factor-α, brain structural connectivity, and processing speed in major depression
- Author
-
Flinkenflügel, Kira, Gruber, Marius, Meinert, Susanne, Thiel, Katharina, Winter, Alexandra, Goltermann, Janik, Usemann, Paula, Brosch, Katharina, Stein, Frederike, Thomas-Odenthal, Florian, Wroblewski, Adrian, Pfarr, Julia-Katharina, David, Friederike S., Beins, Eva C., Grotegerd, Dominik, Hahn, Tim, Leehr, Elisabeth J., Dohm, Katharina, Bauer, Jochen, Forstner, Andreas J., Nöthen, Markus M., Jamalabadi, Hamidreza, Straube, Benjamin, Alexander, Nina, Jansen, Andreas, Witt, Stephanie H., Rietschel, Marcella, Nenadić, Igor, van den Heuvel, Martijn P., Kircher, Tilo, Repple, Jonathan, and Dannlowski, Udo
- Published
- 2024
- Full Text
- View/download PDF
203. Production of chitosan from Aspergillus niger and quantitative evaluation of the process using adapted analytical tools
- Author
-
Krake, S., Conzelmann, C., Heuer, S., Dyballa, M., Zibek, S., and Hahn, T.
- Published
- 2024
- Full Text
- View/download PDF
204. Material density dual-energy CT images: value added in early diagnosis of peritoneal carcinomatosis: Original research
- Author
-
Pisuchpen, Nisanard, Lennartz, Simon, Parakh, Anushri, Kongboonvijit, Sasiprang, Srinivas Rao, Shravya, Pierce, Theodore T., Anderson, Mark A., Hahn, Peter F., Mercaldo, Nathaniel D., and Kambadakone, Avinash
- Published
- 2024
- Full Text
- View/download PDF
205. Securing multi-client range queries over encrypted data
- Author
-
Park, Jae Hwan, Rezaeifar, Zeinab, and Hahn, Changhee
- Published
- 2024
- Full Text
- View/download PDF
206. Safety and efficacy of conventional compared to segmented esophageal fully covered self-expanding metal stents: a retrospective multicenter case–control study
- Author
-
Schlemmer, Claudius, Voigtländer, Torsten, Drews, Jan, Engelke, Carsten, Marquardt, Jens U., Heidrich, Benjamin, Klein, Friederike, Wedemeyer, Heiner, Kirstein, Martha M., and von Hahn, Thomas
- Published
- 2024
- Full Text
- View/download PDF
207. IPNA clinical practice recommendations for the diagnosis and management of children with IgA nephropathy and IgA vasculitis nephritis
- Author
-
Vivarelli, Marina, Samuel, Susan, Coppo, Rosanna, Barratt, Jonathan, Bonilla-Felix, Melvin, Haffner, Dieter, Gibson, Keisha, Haas, Mark, Abdel-Hafez, Maher Ahmed, Adragna, Marta, Brogan, Paul, Kim, Siah, Liu, Isaac, Liu, Zhi-Hong, Mantan, Mukta, Shima, Yuko, Shimuzu, Masaki, Shen, Qian, Trimarchi, Hernan, Hahn, Deirdre, Hodson, Elisabeth, Pfister, Ken, Alladin, Areefa, Boyer, Olivia, and Nakanishi, Koichi
- Published
- 2024
- Full Text
- View/download PDF
208. The role of non-economic goals in academic spin-offs
- Author
-
Criaco, Giuseppe, Hahn, Davide, Minola, Tommaso, and Pittino, Daniel
- Published
- 2024
- Full Text
- View/download PDF
209. Noninvasive biomarkers for the detection of GERD-induced pulmonary injury
- Author
-
Latorre-Rodríguez, Andrés R., Mittal, Sumeet K., Ravichandran, Ranjithkumar, Reynolds, Austin, Isaza-Restrepo, Andrés, Mittal, Jahanvi, Hahn, Mary F., Bremner, Ross M., and Mohanakumar, Thalachallour
- Published
- 2024
- Full Text
- View/download PDF
210. Failing successfully? Local referendums and ENGOs’ lawsuits as challenges to wind energy expansion in Germany
- Author
-
Töller, Annette Elisabeth, Garske, Benjamin, Rasch, Daniel, Weigel, Alix, and Hahn, Hanno
- Published
- 2024
- Full Text
- View/download PDF
211. Neural foundation of the diathesis-stress model: longitudinal gray matter volume changes in response to stressful life events in major depressive disorder and healthy controls
- Author
-
Thomas-Odenthal, Florian, Ringwald, Kai, Teutenberg, Lea, Stein, Frederike, Alexander, Nina, Bonnekoh, Linda M., Brosch, Katharina, Dohm, Katharina, Flinkenflügel, Kira, Grotegerd, Dominik, Hahn, Tim, Jansen, Andreas, Leehr, Elisabeth J., Meinert, Susanne, Pfarr, Julia-Katharina, Renz, Harald, Schürmeyer, Navid, Stief, Thomas, Straube, Benjamin, Thiel, Katharina, Usemann, Paula, Winter, Alexandra, Krug, Axel, Nenadić, Igor, Dannlowski, Udo, and Kircher, Tilo
- Published
- 2024
- Full Text
- View/download PDF
212. How large language models can reshape collective intelligence
- Author
-
Burton, Jason W., Lopez-Lopez, Ezequiel, Hechtlinger, Shahar, Rahwan, Zoe, Aeschbach, Samuel, Bakker, Michiel A., Becker, Joshua A., Berditchevskaia, Aleks, Berger, Julian, Brinkmann, Levin, Flek, Lucie, Herzog, Stefan M., Huang, Saffron, Kapoor, Sayash, Narayanan, Arvind, Nussberger, Anne-Marie, Yasseri, Taha, Nickl, Pietro, Almaatouq, Abdullah, Hahn, Ulrike, Kurvers, Ralf H. J. M., Leavy, Susan, Rahwan, Iyad, Siddarth, Divya, Siu, Alice, Woolley, Anita W., Wulff, Dirk U., and Hertwig, Ralph
- Published
- 2024
- Full Text
- View/download PDF
213. Das geheime Leben der Nutzpflanzen – neue Einblicke mit Biosensoren
- Author
-
Müller-Schüssele, Stefanie J., Schwarzländer, Markus, and Hahn, Matthias
- Published
- 2024
- Full Text
- View/download PDF
214. Untangling the chemical complexity of plastics to improve life cycle outcomes
- Author
-
Law, Kara Lavender, Sobkowicz, Margaret J., Shaver, Michael P., and Hahn, Mark E.
- Published
- 2024
- Full Text
- View/download PDF
215. The cerebellum modulates thirst
- Author
-
Mishra, Ila, Feng, Bing, Basu, Bijoya, Brown, Amanda M., Kim, Linda H., Lin, Tao, Raza, Mir Abbas, Moore, Amelia, Hahn, Abigayle, Bailey, Samantha, Sharp, Alaina, Bournat, Juan C., Poulton, Claire, Kim, Brian, Langsner, Amos, Sathyanesan, Aaron, Sillitoe, Roy V., He, Yanlin, and Chopra, Atul R.
- Published
- 2024
- Full Text
- View/download PDF
216. Hat die zahnärztliche Früherkennungs-untersuchung Einfluss auf die Zahn- gesundheit von 6- bis 7-jährigen Kindern in Deutschland?
- Author
-
Hahn, Henrik and Hirsch, Christian
- Published
- 2024
- Full Text
- View/download PDF
217. Correlates of Intimate Partner Violence, Including Psychological Partner Violence, in a Multisite U.S. Cohort of People in HIV Care
- Author
-
Fredericksen, R. J., Mixson, L. S., Drumright, L. N., Nance, R. M., Delaney, J. A. C., Ruderman, S. A., Whitney, B. M., Hahn, A., Ma, J., Mayer, K. H., Christopoulos, K. A., Willig, A. L., Napravnik, S., Bamford, L., Cachay, E., Eron, J. J., Saag, M., Jacobson, J., Kitahata, M. M., and Crane, H. M.
- Published
- 2024
- Full Text
- View/download PDF
218. Potential of animal-welfare compliant and sustainably sourced serum from pig slaughter blood
- Author
-
Hahn, Olga, Peters, Kirsten, Hartmann, Alexander, Dannenberger, Dirk, and Kalbe, Claudia
- Published
- 2024
- Full Text
- View/download PDF
219. Integrating scenario- and contract-based verification for automated vessels
- Author
-
Hake, Georg, Reiher, David, Mentjes, Jan, and Hahn, Axel
- Published
- 2024
- Full Text
- View/download PDF
220. Impact of the Relational, Built, Community, and Policy/Political Environments on Immigrant Child Health: A Narrative Review
- Author
-
Zuckerman, Anna, Nagin, Perry, Ibrahim, Anisa, Green, Andrea E., and Dawson-Hahn, Elizabeth E.
- Published
- 2024
- Full Text
- View/download PDF
221. Improving assessment of lesions in longitudinal CT scans: a bi-institutional reader study on an AI-assisted registration and volumetric segmentation workflow
- Author
-
Hering, Alessa, Westphal, Max, Gerken, Annika, Almansour, Haidara, Maurer, Michael, Geisler, Benjamin, Kohlbrandt, Temke, Eigentler, Thomas, Amaral, Teresa, Lessmann, Nikolas, Gatidis, Sergios, Hahn, Horst, Nikolaou, Konstantin, Othman, Ahmed, Moltz, Jan, and Peisen, Felix
- Published
- 2024
- Full Text
- View/download PDF
222. A Direct Real-Time Observation of Anion Intercalation in Graphite Process and Its Fully Reversibility by SAXS/WAXS Techniques
- Author
-
Greco, Giorgia, Elia, Giuseppe Antonio, Hermida-Merino, Daniel, Hahn, Robert, and Raoux, Simone
- Subjects
Condensed Matter - Materials Science - Abstract
The process of anion intercalation in graphite and its reversibility plays a crucial role in the next generation energy-storage devices. Herein the reaction mechanism of the aluminum graphite dual ion cell by operando X-ray scattering from small angles to wide angles is investigated. The staging behavior of the graphite intercalation compound (GIC) formation, its phase transitions, and its reversible process are observed for the first time by directly measuring the repeated intercalation distance, along with the microporosity of the cathode graphite. The investigation demonstrates complete reversibility of the electrochemical intercalation process, alongside nano- and micro-structural reorganization of natural graphite induced by intercalation. This work represents a new insight into thermodynamic aspects taking place during intermediate phase transitions in the GIC formation.
- Published
- 2024
- Full Text
- View/download PDF
223. The Behavior of the Intercalant AlCl_4 Anion during the Formation of Graphite Intercalation Compound: An X-ray Absorption Fine Structure Study
- Author
-
Greco, Giorgia, Elia, Giuseppe Antonio, Kayser, Yves, Beckhoff, Burkhard, Perestjuk, Marko, Raoux, Simone, and Hahn, Rober
- Subjects
Condensed Matter - Materials Science - Abstract
This work aims to study the insertion of AlCl_4^- anion in the crystalline structure of oriented pyrolytic graphite (PG) at the point of view of the anion itself. The electronic and atomic structures of the anion at different intercalation stages are studied. In particular double-edge (bicolor) X-ray absorption spectroscopy at the Al and Cl K-edges is carried out, highlighting a contraction of the anion bonding at the highest intercalation degree obtained electrochemically (stage 3), while the electronic population changes for both the edges upon cycle.
- Published
- 2024
- Full Text
- View/download PDF
224. exploreCOSMOS: Interactive Exploration of Conditional Statistical Shape Models in the Web-Browser
- Author
-
Hahn, Maximilian and Egger, Bernhard
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Statistical Shape Models of faces and various body parts are heavily used in medical image analysis, computer vision and visualization. Whilst the field is well explored with many existing tools, all of them aim at experts, which limits their applicability. We demonstrate the first tool that enables the convenient exploration of statistical shape models in the browser, with the capability to manipulate the faces in a targeted manner. This manipulation is performed via a posterior model given partial observations. We release our code and application on GitHub https://github.com/maximilian-hahn/exploreCOSMOS, Comment: Dies ist ein Vorabdruck des folgenden Beitrages, ver\"offentlicht in BVM 2024, herausgegeben von Maier, A. et al, 2024, Springer Nature, vervielf\"altigt mit Genehmigung von Springer Nature. Die finale authentifizierte Version ist online verf\"ugbar unter: https://doi.org/10.1007/978-3-658-44037-4_32
- Published
- 2024
- Full Text
- View/download PDF
225. Compact and De-biased Negative Instance Embedding for Multi-Instance Learning on Whole-Slide Image Classification
- Author
-
Lee, Joohyung, Nam, Heejeong, Lee, Kwanhyung, and Hahn, Sangchul
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Whole-slide image (WSI) classification is a challenging task because 1) patches from WSI lack annotation, and 2) WSI possesses unnecessary variability, e.g., stain protocol. Recently, Multiple-Instance Learning (MIL) has made significant progress, allowing for classification based on slide-level, rather than patch-level, annotations. However, existing MIL methods ignore that all patches from normal slides are normal. Using this free annotation, we introduce a semi-supervision signal to de-bias the inter-slide variability and to capture the common factors of variation within normal patches. Because our method is orthogonal to the MIL algorithm, we evaluate our method on top of the recently proposed MIL algorithms and also compare the performance with other semi-supervised approaches. We evaluate our method on two public WSI datasets including Camelyon-16 and TCGA lung cancer and demonstrate that our approach significantly improves the predictive performance of existing MIL algorithms and outperforms other semi-supervised algorithms. We release our code at https://github.com/AITRICS/pathology_mil., Comment: Accepted to ICASSP 2024
- Published
- 2024
226. Why are Sensitive Functions Hard for Transformers?
- Author
-
Hahn, Michael and Rofin, Mark
- Subjects
Computer Science - Machine Learning - Abstract
Empirical studies have identified a range of learnability biases and limitations of transformers, such as a persistent difficulty in learning to compute simple formal languages such as PARITY, and a bias towards low-degree functions. However, theoretical understanding remains limited, with existing expressiveness theory either overpredicting or underpredicting realistic learning abilities. We prove that, under the transformer architecture, the loss landscape is constrained by the input-space sensitivity: Transformers whose output is sensitive to many parts of the input string inhabit isolated points in parameter space, leading to a low-sensitivity bias in generalization. We show theoretically and empirically that this theory unifies a broad array of empirical observations about the learning abilities and biases of transformers, such as their generalization bias towards low sensitivity and low degree, and difficulty in length generalization for PARITY. This shows that understanding transformers' inductive biases requires studying not just their in-principle expressivity, but also their loss landscape., Comment: ACL 2024
- Published
- 2024
227. JustSTART: How to Find an RSA Authentication Bypass on Xilinx UltraScale(+) with Fuzzing
- Author
-
Ender, Maik, Hahn, Felix, Fyrbiak, Marc, Moradi, Amir, and Paar, Christof
- Subjects
Computer Science - Cryptography and Security - Abstract
Fuzzing is a well-established technique in the software domain to uncover bugs and vulnerabilities. Yet, applications of fuzzing for security vulnerabilities in hardware systems are scarce, as principal reasons are requirements for design information access (HDL source code). Moreover, observation of internal hardware state during runtime is typically an ineffective information source, as its documentation is often not publicly available. In addition, such observation during runtime is also inefficient due to bandwidth-limited analysis interfaces (JTAG, and minimal introspection of internal modules). In this work, we investigate fuzzing for 7-Series and UltraScale(+) FPGA configuration engines, the control plane governing the (secure) bitstream configuration within the FPGA. Our goal is to examine the effectiveness of fuzzing to analyze and document the opaque inner workings of FPGA configuration engines, with a primary emphasis on identifying security vulnerabilities. Using only the publicly available chip and dispersed documentation, we first design and implement ConFuzz, an advanced FPGA configuration engine fuzzing and rapid prototyping framework. Based on our detailed understanding of the bitstream file format, we then systematically define 3 novel key fuzzing strategies for Xilinx configuration engines. Moreover, our strategies are executed through mutational structure-aware fuzzers and incorporate various novel custom-tailored, FPGA-specific optimizations. Our evaluation reveals previously undocumented behavior within the configuration engine, including critical findings such as system crashes leading to unresponsive states of the FPGA. In addition, our investigations not only lead to the rediscovery of the starbleed attack but also uncover JustSTART (CVE-2023-20570), capable of circumventing RSA authentication for Xilinx UltraScale(+). Note that we also discuss countermeasures.
- Published
- 2024
228. Inevitability of Polarization in Geometric Opinion Exchange
- Author
-
Alidou, Abdou Majeed, Baligács, Júlia, Hahn-Klimroth, Max, Hązła, Jan, Hintze, Lukas, and Scheftelowitsch, Olga
- Subjects
Computer Science - Social and Information Networks ,Economics - Theoretical Economics - Abstract
Polarization and unexpected correlations between opinions on diverse topics (including in politics, culture and consumer choices) are an object of sustained attention. However, numerous theoretical models do not seem to convincingly explain these phenomena. This paper is motivated by a recent line of work, studying models where polarization can be explained in terms of biased assimilation and geometric interplay between opinions on various topics. The agent opinions are represented as unit vectors on a multidimensional sphere and updated according to geometric rules. In contrast to previous work, we focus on the classical opinion exchange setting, where the agents update their opinions in discrete time steps, with a pair of agents interacting randomly at every step. The opinions are updated according to an update rule belonging to a general class. Our findings are twofold. First, polarization appears to be ubiquitous in the class of models we study, requiring only relatively modest assumptions reflecting biased assimilation. Second, there is a qualitative difference between two-dimensional dynamics on the one hand, and three or more dimensions on the other. Accordingly, we prove almost sure polarization for a large class of update rules in two dimensions. Then, we prove polarization in three and more dimensions in more limited cases and try to shed light on central difficulties that are absent in two dimensions.
- Published
- 2024
229. Sparse-grid Discontinuous Galerkin Methods for the Vlasov-Poisson-Lenard-Bernstein Model
- Author
-
Schnake, Stefan, Kendrick, Coleman, Endeve, Eirik, Stoyanov, Miroslav, Hahn, Steven, Hauck, Cory D, Green, David L, Snyder, Phil, and Canik, John
- Subjects
Mathematics - Numerical Analysis - Abstract
Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov-Poisson-Lenard-Bernstein (VPLB) model. This model has applications to plasma physics and is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a 1x3v slab geometry. We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid discretization library ASGarD.
- Published
- 2024
230. Experimental study of Alfv\'en wave reflection from an Alfv\'en-speed gradient relevant to the solar coronal holes
- Author
-
Bose, Sayak, TenBarge, Jason M., Carter, Troy, Hahn, Michael, Ji, Hantao, Juno, James, Savin, Daniel Wolf, Tripathi, Shreekrishna, and Vincena, Stephen
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Plasma Physics - Abstract
We report the first experimental detection of a reflected Alfv\'en wave from an Alfv\'en-speed gradient under conditions similar to those in coronal holes. The experiments were conducted in the Large Plasma Device at the University of California, Los Angeles. We present the experimentally measured dependence of the coefficient of reflection versus the wave inhomogeneity parameter, i.e., the ratio of the wave length of the incident wave to the length scale of the gradient. Two-fluid simulations using the Gkeyll code qualitatively agree with and support the experimental findings. Our experimental results support models of wave heating that rely on wave reflection at low heights from a smooth Alfv\'en-speed gradient to drive turbulence.
- Published
- 2024
- Full Text
- View/download PDF
231. Performance and first measurements of the MAGIC Stellar Intensity Interferometer
- Author
-
MAGIC Collaboration, Abe, S., Abhir, J., Acciari, V. A., Aguasca-Cabot, A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Babić, A., Baquero, A., de Almeida, U. Barres, Barrio, J. A., Batković, I., Bautista, A., Baxter, J., González, J. Becerra, Bernardini, E., Bernardos, M., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bošnjak, Ž., Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Ceribella, G., Chai, Y., Cifuentes, A., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., de Menezes, R., Del Popolo, A., Delfino, M., Delgado, J., Mendez, C. Delgado, Di Pierro, F., Di Venere, L., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Elsaesser, D., Emery, G., Escudero, J., na, L. Fari, Fattorini, A., Foffano, L., Font, L., Fröse, S., Fukami, S., Fukazawa, Y., López, R. J. García, Garczarczyk, M., Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Gradetzke, T., Grau, R., Green, D., Green, J. G., Günther, P., Hadasch, D., Hahn, A., Hassan, T., Heckmann, L., Herrera, J., Hrupec, D., Hütten, M., Imazawa, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kayanoki, T., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kouch, P. M., Kubo, H., Kushida, J., Láinez, M., Lamastra, A., Leone, F., Lindfors, E., Linhoff, L., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Lyard, E., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Mang, N., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Martínez-Chicharro, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Morcuende, D., Nakamori, T., Nanci, C., Neustroev, V., Nickel, L., Rosillo, M. Nievas, Nigro, C., Nikolić, L., Nilsson, K., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Okumura, A., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Peresano, M., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Satalecka, K., Saturni, F. G., Schleicher, B., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sciaccaluga, A., Silvestri, G., Sitarek, J., Sliusar, V., Sobczynska, D., Spolon, A., Stamerra, A., Strišković, J., Strom, D., Strzys, M., Suda, Y., Surić, T., Suutarinen, S., Tajima, H., Takahashi, M., Takeishi, R., Temnikov, P., Terauchi, K., Terzić, T., Truzzi, M. Teshima S., Tutone, A., Ubach, S., van Scherpenberg, J., Acosta, M. Vazquez, Ventura, S., Viale, I., Vigorito, C. F., Vitale, V., Walter, R., Will, M., Wunderlich, C., Yamamoto, T., Díaz, G. Chon C., Fiori, M., Lobo, M., Naletto, G., Polo, M., Rodríguez-Vázquez, J. J., Saha, P., and Zampieri, L.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
In recent years, a new generation of optical intensity interferometers has emerged, leveraging the existing infrastructure of Imaging Atmospheric Cherenkov Telescopes (IACTs). The MAGIC telescopes host the MAGIC-SII system (Stellar Intensity Interferometer), implemented to investigate the feasibility and potential of this technique on IACTs. After the first successful measurements in 2019, the system was upgraded and now features a real-time, dead-time-free, 4-channel, GPU-based correlator. These hardware modifications allow seamless transitions between MAGIC's standard very-high-energy gamma-ray observations and optical interferometry measurements within seconds. We establish the feasibility and potential of employing IACTs as competitive optical Intensity Interferometers with minimal hardware adjustments. The measurement of a total of 22 stellar diameters are reported, 9 corresponding to reference stars with previous comparable measurements, and 13 with no prior measurements. A prospective implementation involving telescopes from the forthcoming Cherenkov Telescope Array Observatory's northern hemisphere array, such as the first prototype of its Large-Sized Telescopes, LST-1, is technically viable. This integration would significantly enhance the sensitivity of the current system and broaden the UV-plane coverage. This advancement would enable the system to achieve competitive sensitivity with the current generation of long-baseline optical interferometers over blue wavelengths., Comment: 18 pages, 13 figures, submitted to MNRAS
- Published
- 2024
- Full Text
- View/download PDF
232. Noisy group testing via spatial coupling
- Author
-
Coja-Oghlan, Amin, Hahn-Klimroth, Max, Hintze, Lukas, Kaaser, Dominik, Krieg, Lena, Rolvien, Maurice, and Scheftelowitsch, Olga
- Subjects
Computer Science - Discrete Mathematics ,Computer Science - Information Theory ,Mathematics - Combinatorics ,05C80, 62B10, 68P30, 68R05 ,F.2.2 - Abstract
We study the problem of identifying a small set $k\sim n^\theta$, $0<\theta<1$, of infected individuals within a large population of size $n$ by testing groups of individuals simultaneously. All tests are conducted concurrently. The goal is to minimise the total number of tests required. In this paper we make the (realistic) assumption that tests are noisy, i.e.\ that a group that contains an infected individual may return a negative test result or one that does not contain an infected individual may return a positive test results with a certain probability. The noise need not be symmetric. We develop an algorithm called SPARC that correctly identifies the set of infected individuals up to $o(k)$ errors with high probability with the asymptotically minimum number of tests. Additionally, we develop an algorithm called SPEX that exactly identifies the set of infected individuals w.h.p. with a number of tests that matches the information-theoretic lower bound for the constant column design, a powerful and well-studied test design.
- Published
- 2024
- Full Text
- View/download PDF
233. Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Es-sghir, H. Amar, Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., BarhamAlzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Campanelli, W., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clair, J., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collot, J., Conley, E., Conrad, J. M., Convery, M., Cooke, P., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., De la Torre, A., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dvornikov, O., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferraro, F., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, P., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Haaf, K., Habig, A., Hadavand, H., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmueller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kamiya, F., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kuhlmann, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, March, N. López, Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nalbandyan, M., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Poppi, F., Pordes, S., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, S., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, D., Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Varner, G., Vasina, S., Vaughan, N., Vaziri, K., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Villa, E., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen., Comment: 36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text
- Published
- 2024
234. Multimodal Neurodegenerative Disease Subtyping Explained by ChatGPT
- Author
-
Reyes, Diego Machado, Chao, Hanqing, Hahn, Juergen, Shen, Li, and Yan, Pingkun
- Subjects
Computer Science - Machine Learning ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease; yet its currently available treatments are limited to stopping disease progression. Moreover, effectiveness of these treatments is not guaranteed due to the heterogenetiy of the disease. Therefore, it is essential to be able to identify the disease subtypes at a very early stage. Current data driven approaches are able to classify the subtypes at later stages of AD or related disorders, but struggle when predicting at the asymptomatic or prodromal stage. Moreover, most existing models either lack explainability behind the classification or only use a single modality for the assessment, limiting scope of its analysis. Thus, we propose a multimodal framework that uses early-stage indicators such as imaging, genetics and clinical assessments to classify AD patients into subtypes at early stages. Similarly, we build prompts and use large language models, such as ChatGPT, to interpret the findings of our model. In our framework, we propose a tri-modal co-attention mechanism (Tri-COAT) to explicitly learn the cross-modal feature associations. Our proposed model outperforms baseline models and provides insight into key cross-modal feature associations supported by known biological mechanisms.
- Published
- 2024
235. A Preliminary Study on Using Large Language Models in Software Pentesting
- Author
-
Shashwat, Kumar, Hahn, Francis, Ou, Xinming, Goldgof, Dmitry, Hall, Lawrence, Ligatti, Jay, Rajgopalan, S. Raj, and Tabari, Armin Ziaie
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Artificial Intelligence - Abstract
Large language models (LLM) are perceived to offer promising potentials for automating security tasks, such as those found in security operation centers (SOCs). As a first step towards evaluating this perceived potential, we investigate the use of LLMs in software pentesting, where the main task is to automatically identify software security vulnerabilities in source code. We hypothesize that an LLM-based AI agent can be improved over time for a specific security task as human operators interact with it. Such improvement can be made, as a first step, by engineering prompts fed to the LLM based on the responses produced, to include relevant contexts and structures so that the model provides more accurate results. Such engineering efforts become sustainable if the prompts that are engineered to produce better results on current tasks, also produce better results on future unknown tasks. To examine this hypothesis, we utilize the OWASP Benchmark Project 1.2 which contains 2,740 hand-crafted source code test cases containing various types of vulnerabilities. We divide the test cases into training and testing data, where we engineer the prompts based on the training data (only), and evaluate the final system on the testing data. We compare the AI agent's performance on the testing data against the performance of the agent without the prompt engineering. We also compare the AI agent's results against those from SonarQube, a widely used static code analyzer for security testing. We built and tested multiple versions of the AI agent using different off-the-shelf LLMs -- Google's Gemini-pro, as well as OpenAI's GPT-3.5-Turbo and GPT-4-Turbo (with both chat completion and assistant APIs). The results show that using LLMs is a viable approach to build an AI agent for software pentesting that can improve through repeated use and prompt engineering.
- Published
- 2024
236. Enabling the Digital Democratic Revival: A Research Program for Digital Democracy
- Author
-
Grossi, Davide, Hahn, Ulrike, Mäs, Michael, Nitsche, Andreas, Behrens, Jan, Boehmer, Niclas, Brill, Markus, Endriss, Ulle, Grandi, Umberto, Haret, Adrian, Heitzig, Jobst, Janssens, Nicolien, Jonker, Catholijn M., Keijzer, Marijn A., Kistner, Axel, Lackner, Martin, Lieben, Alexandra, Mikhaylovskaya, Anna, Murukannaiah, Pradeep K., Proietti, Carlo, Revel, Manon, Rouméas, Élise, Shapiro, Ehud, Sreedurga, Gogulapati, Swierczek, Björn, Talmon, Nimrod, Turrini, Paolo, Terzopoulou, Zoi, and Van De Putte, Frederik
- Subjects
Computer Science - Computers and Society - Abstract
This white paper outlines a long-term scientific vision for the development of digital-democracy technology. We contend that if digital democracy is to meet the ambition of enabling a participatory renewal in our societies, then a comprehensive multi-methods research effort is required that could, over the years, support its development in a democratically principled, empirically and computationally informed way. The paper is co-authored by an international and interdisciplinary team of researchers and arose from the Lorentz Center Workshop on ``Algorithmic Technology for Democracy'' (Leiden, October 2022).
- Published
- 2024
237. Extended Spin-Coherence Time in Strongly-Coupled Spin Baths in Quasi Two-Dimensional Layers
- Author
-
Schätzle, Philip, Ghassemizadeh, Reyhaneh, Urban, Daniel F., Wellens, Thomas, Knittel, Peter, Reiter, Florentin, Jeske, Jan, and Hahn, Walter
- Subjects
Quantum Physics ,Condensed Matter - Materials Science - Abstract
We investigate the spin-coherence decay of NV$^-$-spins interacting with the strongly-coupled bath of nitrogen defects in diamond layers. For thin diamond layers, we demonstrate that the spin-coherence times exceed those of bulk diamond, thus allowing to surpass the limit imposed by high defect concentrations in bulk. We show that the stretched-exponential parameter for the short-time spin-coherence decay is governed by the hyperfine interaction in the bath, thereby constraining random-noise models. We introduce a novel method based on the cluster-correlation expansion applied to strongly-interacting bath partitions. Our results facilitate material development for quantum-technology devices., Comment: Letter with Supplemental Material
- Published
- 2024
238. Querying Fault and Attack Trees: Property Specification on a Water Network
- Author
-
Nicoletti, Stefano M., Lopuhaä-Zwakenberg, Milan, Hahn, E. Moritz, and Stoelinga, Mariëlle
- Subjects
Computer Science - Logic in Computer Science - Abstract
We provide an overview of three different query languages whose objective is to specify properties on the highly popular formalisms of fault trees (FTs) and attack trees (ATs). These are BFL, a Boolean Logic for FTs, PFL, a probabilistic extension of BFL and ATM, a logic for security metrics on ATs. We validate the framework composed by these three logics by applying them to the case study of a water distribution network. We extend the FT for this network - found in the literature - and we propose to model the system under analysis with the Fault Trees/Attack Trees (FT/ATs) formalism, combining both FTs and ATs in a unique model. Furthermore, we propose a novel combination of the showcased logics to account for queries that jointly consider both the FT and the AT of the model, integrating influences of attacks on failure probabilities of different components. Finally, we extend the domain specific language for PFL with novel constructs to capture the interplay between metrics of attacks - e.g., "cost", success probabilities - and failure probabilities in the system.
- Published
- 2024
239. ${\rm S{\scriptsize IM}BIG}$: Cosmological Constraints from the Redshift-Space Galaxy Skew Spectra
- Author
-
Hou, Jiamin, Dizgah, Azadeh Moradinezhad, Hahn, ChangHoon, Eickenberg, Michael, Ho, Shirley, Lemos, Pablo, Massara, Elena, Modi, Chirag, Parker, Liam, and Blancard, Bruno Régaldo-Saint
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Extracting the non-Gaussian information of the cosmic large-scale structure (LSS) is vital in unlocking the full potential of the rich datasets from the upcoming stage-IV galaxy surveys. Galaxy skew spectra serve as efficient beyond-two-point statistics, encapsulating essential bispectrum information with computational efficiency akin to power spectrum analysis. This paper presents the first cosmological constraints from analyzing the full set of redshift-space galaxy skew spectra of the data from the SDSS-III BOSS, accessing cosmological information down to nonlinear scales. Employing the ${\rm S{\scriptsize IM}BIG}$ forward modeling framework and simulation-based inference via normalizing flows, we analyze the CMASS-SGC sub-sample, which constitute approximately 10\% of the full BOSS data. Analyzing the scales up to $k_{\rm max}=0.5 \, {\rm Mpc}^{-1}h$, we find that the skew spectra improve the constraints on $\Omega_{\rm m}, \Omega_{\rm b}, h$, and $n_s$ by 34\%, 35\%, 18\%, 10\%, respectively, compared to constraints from previous ${\rm S{\scriptsize IM}BIG}$ power spectrum multipoles analysis, yielding $\Omega_{\rm m}=0.288^{+0.024}_{-0.034}$, $\Omega_{\rm b}= 0.043^{+0.005}_{-0.007}$, $h=0.759^{+0.104}_{-0.050}$, $n_{\rm s} = 0.918^{+0.041}_{-0.090}$ (at 68\% confidence limit). On the other hand, the constraints on $\sigma_8$ are weaker than from the power spectrum. Including the Big Bang Nucleosynthesis (BBN) prior on baryon density reduces the uncertainty on the Hubble parameter further, achieving $h=0.750^{+0.034}_{-0.032}$, which is a 38\% improvement over the constraint from the power spectrum with the same prior. Compared to the ${\rm S{\scriptsize IM}BIG}$ bispectrum (monopole) analysis, skew spectra offer comparable constraints on larger scales ($k_{\rm max}<0.3\, {\rm Mpc}^{-1}h$) for most parameters except for $\sigma_8$., Comment: 23 pages, 12 figures, 2 tables
- Published
- 2024
240. Dynamic image reconstruction in MPI with RESESOP-Kaczmarz
- Author
-
Nitzsche, Marius and Hahn, Bernadette N
- Subjects
Mathematics - Optimization and Control ,Mathematics - Numerical Analysis - Abstract
In Magnetic Particle Imaging (MPI), it is typically assumed that the studied specimen is stationary during the data acquisition. In practical applications however, the searched-for 3D distribution of the magnetic nanoparticles might show a dynamic behavior, caused by e.g. breathing or movement of the blood. Neglecting those dynamics during the reconstruction step results in motion artifacts and a reduced image quality. This article addresses the challenge of capturing high quality images in the presence of motion. A promising technique provides the Regularized Sequential Subspace Optimization (RESESOP) algorithm, which takes dynamics as model inexactness into account, significantly improving reconstruction compared to standard static algorithms like regularized Kaczmarz. Notably, this algorithm operates with minimal prior information and the method allows for subframe reconstruction, making it suitable for scenarios with rapid particle movement. The performance of the proposed method is demonstrated on both simulated and real data sets.
- Published
- 2024
241. pyAKI -- An Open Source Solution to Automated KDIGO classification
- Author
-
Porschen, Christian, Ernsting, Jan, Brauckmann, Paul, Weiss, Raphael, Würdemann, Till, Booke, Hendrik, Amini, Wida, Maidowski, Ludwig, Risse, Benjamin, Hahn, Tim, and von Groote, Thilo
- Subjects
Computer Science - Machine Learning ,Computer Science - Software Engineering - Abstract
Acute Kidney Injury (AKI) is a frequent complication in critically ill patients, affecting up to 50% of patients in the intensive care units. The lack of standardized and open-source tools for applying the Kidney Disease Improving Global Outcomes (KDIGO) criteria to time series data has a negative impact on workload and study quality. This project introduces pyAKI, an open-source pipeline addressing this gap by providing a comprehensive solution for consistent KDIGO criteria implementation. The pyAKI pipeline was developed and validated using a subset of the Medical Information Mart for Intensive Care (MIMIC)-IV database, a commonly used database in critical care research. We defined a standardized data model in order to ensure reproducibility. Validation against expert annotations demonstrated pyAKI's robust performance in implementing KDIGO criteria. Comparative analysis revealed its ability to surpass the quality of human labels. This work introduces pyAKI as an open-source solution for implementing the KDIGO criteria for AKI diagnosis using time series data with high accuracy and performance.
- Published
- 2024
242. Modeling the Kinematics of Central and Satellite Galaxies Using Normalizing Flows
- Author
-
Kwon, K. J. and Hahn, ChangHoon
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Galaxy clustering contains information on cosmology, galaxy evolution, and the relationship between galaxies and their dark matter hosts. On small scales, the detailed kinematics of galaxies within their host halos determines the galaxy clustering. In this paper, we investigate the dependence of the central and satellite galaxy kinematics on $\boldsymbol{\theta}$, the intrinsic host halo properties (mass, spin, concentration), cosmology ($\Omega_{\textrm{m}}$, $\sigma_8$), and baryonic feedback from active galactic nuclei and supernovae ($A_{\rm AGN1}$, $A_{\rm AGN2}$, $A_{\rm SN1}$, $A_{\rm SN2}$). We utilize 2,000 hydrodynamic simulations in CAMELS run using IllustrisTNG and SIMBA galaxy formation models. Focusing on central and satellite galaxies with $M>10^9M_\ast$, we apply neural density estimation (NDE) with normalizing flows to estimate their $p(\Delta r|\boldsymbol{\theta})$ and $p(\Delta v|\boldsymbol{\theta})$, where $\Delta r$ and $\Delta v$ are the magnitudes of the halo-centric spatial and velocity offsets. With NDE, we accurately capture the dependence of galaxy kinematics on each component of $\boldsymbol{\theta}$. For central galaxies, we identify significant spatial and velocity biases dependent on halo mass, concentration, and spin. For satellite distributions, we find significant deviations from an NFW profile and evidence that they consist of distinct orbiting and infalling populations. However, we find no significant dependence on $\boldsymbol{\theta}$ besides a weak dependence on host halo spin. For both central and satellite galaxies, there is no significant dependence on cosmological parameters and baryonic feedback. These results provide key insights for improving the current halo occupation distribution (HOD) models. This work is the first in a series that will re-examine and develop HOD frameworks for improved modeling of galaxy clustering at smaller scales., Comment: 20 pages, 13 figures, submitted to ApJ
- Published
- 2024
243. NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis
- Author
-
Cosler, Matthias, Hahn, Christopher, Omar, Ayham, and Schmitt, Frederik
- Subjects
Computer Science - Logic in Computer Science ,Computer Science - Machine Learning - Abstract
We introduce NeuroSynt, a neuro-symbolic portfolio solver framework for reactive synthesis. At the core of the solver lies a seamless integration of neural and symbolic approaches to solving the reactive synthesis problem. To ensure soundness, the neural engine is coupled with model checkers verifying the predictions of the underlying neural models. The open-source implementation of NeuroSynt provides an integration framework for reactive synthesis in which new neural and state-of-the-art symbolic approaches can be seamlessly integrated. Extensive experiments demonstrate its efficacy in handling challenging specifications, enhancing the state-of-the-art reactive synthesis solvers, with NeuroSynt contributing novel solves in the current SYNTCOMP benchmarks.
- Published
- 2024
244. New Beam Dynamics Code for Cyclotron Analysis
- Author
-
Kim, G-H., Cho, H-J., Oh, B-H., Hahn, G-R., Chung, M., Park, S., and Shin, S.
- Subjects
Physics - Accelerator Physics - Abstract
This paper describes the beam dynamic simulation with transfer matrix method for cyclotron. Starting from a description on the equation of motion in the cyclotron, lattice functions were determined from transfer matrix method and the solutions for the 2nd-order nonlinear Hamiltonian were introduced and used in phase space particle tracking. Based on the description of beam dynamics in the cyclotron, simulation code was also developed for cyclotron design., Comment: arXiv admin note: substantial text overlap with arXiv:1807.01397
- Published
- 2024
245. Testing Hadronic-Model Predictions of Depth of Maximum of Air-Shower Profiles and Ground-Particle Signals using Hybrid Data of the Pierre Auger Observatory
- Author
-
The Pierre Auger Collaboration, Halim, A. Abdul, Abreu, P., Aglietta, M., Allekotte, I., Cheminant, K. Almeida, Almela, A., Aloisio, R., Alvarez-Muñiz, J., Yebra, J. Ammerman, Anastasi, G. A., Anchordoqui, L., Andrada, B., Andringa, S., Apollonio, L., Aramo, C., Ferreira, P. R. Araújo, Arnone, E., Velázquez, J. C. Arteaga, Assis, P., Avila, G., Avocone, E., Bakalova, A., Barbato, F., Mocellin, A. Bartz, Bellido, J. A., Berat, C., Bertaina, M. E., Bhatta, G., Bianciotto, M., Biermann, P. L., Binet, V., Bismark, K., Bister, T., Biteau, J., Blazek, J., Bleve, C., Blümer, J., Boháčová, M., Boncioli, D., Bonifazi, C., Arbeletche, L. Bonneau, Borodai, N., Brack, J., Orchera, P. G. Brichetto, Briechle, F. L., Bueno, A., Buitink, S., Buscemi, M., Büsken, M., Bwembya, A., Caballero-Mora, K. S., Cabana-Freire, S., Caccianiga, L., Campuzano, F., Caruso, R., Castellina, A., Catalani, F., Cataldi, G., Cazon, L., Cerda, M., Cermenati, A., Chinellato, J. A., Chudoba, J., Chytka, L., Clay, R. W., Cerutti, A. C. Cobos, Colalillo, R., Coluccia, M. R., Conceição, R., Condorelli, A., Consolati, G., Conte, M., Convenga, F., Santos, D. Correia dos, Costa, P. J., Covault, C. E., Cristinziani, M., Sanchez, C. S. Cruz, Dasso, S., Daumiller, K., Dawson, B. R., de Almeida, R. M., de Jesús, J., de Jong, S. J., Neto, J. R. T. de Mello, De Mitri, I., de Oliveira, J., Franco, D. de Oliveira, de Palma, F., de Souza, V., de Errico, B. P. de Souza, De Vito, E., Del Popolo, A., Deligny, O., Denner, N., Deval, L., di Matteo, A., Dobre, M., Dobrigkeit, C., D'Olivo, J. C., Mendes, L. M. Domingues, Dorosti, Q., Anjos, J. C. dos, Anjos, R. C. dos, Ebr, J., Ellwanger, F., Emam, M., Engel, R., Epicoco, I., Erdmann, M., Etchegoyen, A., Evoli, C., Falcke, H., Farrar, G., Fauth, A. C., Fazzini, N., Feldbusch, F., Fenu, F., Fernandes, A., Fick, B., Figueira, J. M., Filipčič, A., Fitoussi, T., Flaggs, B., Fodran, T., Fujii, T., Fuster, A., Galea, C., Galelli, C., García, B., Gaudu, C., Gemmeke, H., Gesualdi, F., Gherghel-Lascu, A., Ghia, P. L., Giaccari, U., Glombitza, J., Gobbi, F., Gollan, F., Golup, G., Berisso, M. Gómez, Vitale, P. F. Gómez, Gongora, J. P., González, J. M., González, N., Góra, D., Gorgi, A., Gottowik, M., Grubb, T. D., Guarino, F., Guedes, G. P., Guido, E., Gülzow, L., Hahn, S., Hamal, P., Hampel, M. R., Hansen, P., Harari, D., Harvey, V. M., Haungs, A., Hebbeker, T., Hojvat, C., Hörandel, J. R., Horvath, P., Hrabovský, M., Huege, T., Insolia, A., Isar, P. G., Janecek, P., Jilek, V., Johnsen, J. A., Jurysek, J., Kampert, K. -H., Keilhauer, B., Khakurdikar, A., Covilakam, V. V. Kizakke, Klages, H. O., Kleifges, M., Knapp, F., Köhler, J., Kunka, N., Lago, B. L., Langner, N., de Oliveira, M. A. Leigui, Lema-Capeans, Y., Letessier-Selvon, A., Lhenry-Yvon, I., Lopes, L., Lu, L., Luce, Q., Lundquist, J. P., Payeras, A. Machado, Majercakova, M., Mandat, D., Manning, B. C., Mantsch, P., Mariani, F. M., Mariazzi, A. G., Mariş, I. C., Marsella, G., Martello, D., Martinelli, S., Bravo, O. Martínez, Martins, M. A., Mathes, H. -J., Matthews, J., Matthiae, G., Mayotte, E., Mayotte, S., Mazur, P. O., Medina-Tanco, G., Meinert, J., Melo, D., Menshikov, A., Merx, C., Michal, S., Micheletti, M. I., Miramonti, L., Mollerach, S., Montanet, F., Morejon, L., Morello, C., Mulrey, K., Mussa, R., Namasaka, W. M., Negi, S., Nellen, L., Nguyen, K., Nicora, G., Niechciol, M., Nitz, D., Nosek, D., Novotny, V., Nožka, L., Nucita, A., Núñez, L. A., Oliveira, C., Palatka, M., Pallotta, J., Panja, S., Parente, G., Paulsen, T., Pawlowsky, J., Pech, M., Pękala, J., Pelayo, R., Pereira, L. A. S., Martins, E. E. Pereira, Armand, J. Perez, Bertolli, C. Pérez, Perrone, L., Petrera, S., Petrucci, C., Pierog, T., Pimenta, M., Platino, M., Pont, B., Pothast, M., Shahvar, M. Pourmohammad, Privitera, P., Prouza, M., Querchfeld, S., Rautenberg, J., Ravignani, D., Akim, J. V. Reginatto, Reininghaus, M., Ridky, J., Riehn, F., Risse, M., Rizi, V., de Carvalho, W. Rodrigues, Rodriguez, E., Rojo, J. Rodriguez, Roncoroni, M. J., Rossoni, S., Roth, M., Roulet, E., Rovero, A. C., Ruehl, P., Saftoiu, A., Saharan, M., Salamida, F., Salazar, H., Salina, G., Gomez, J. D. Sanabria, Sánchez, F., Santos, E. M., Santos, E., Sarazin, F., Sarmento, R., Sato, R., Savina, P., Schäfer, C. M., Scherini, V., Schieler, H., Schimassek, M., Schimp, M., Schmidt, D., Scholten, O., Schoorlemmer, H., Schovánek, P., Schröder, F. G., Schulte, J., Schulz, T., Sciutto, S. J., Scornavacche, M., Sedoski, A., Segreto, A., Sehgal, S., Shivashankara, S. U., Sigl, G., Silli, G., Sima, O., Simkova, K., Simon, F., Smau, R., Šmída, R., Sommers, P., Soriano, J. F., Squartini, R., Stadelmaier, M., Stanič, S., Stasielak, J., Stassi, P., Strähnz, S., Straub, M., Suomijärvi, T., Supanitsky, A. D., Svozilikova, Z., Szadkowski, Z., Tairli, F., Tapia, A., Taricco, C., Timmermans, C., Tkachenko, O., Tobiska, P., Peixoto, C. J. Todero, Tomé, B., Torrès, Z., Travaini, A., Travnicek, P., Trimarelli, C., Tueros, M., Unger, M., Vaclavek, L., Vacula, M., Galicia, J. F. Valdés, Valore, L., Varela, E., Vásquez-Ramírez, A., Veberič, D., Ventura, C., Quispe, I. D. Vergara, Verzi, V., Vicha, J., Vink, J., Vorobiov, S., Watanabe, C., Watson, A. A., Weindl, A., Wiencke, L., Wilczyński, H., Wittkowski, D., Wundheiler, B., Yue, B., Yushkov, A., Zapparrata, O., Zas, E., Zavrtanik, D., and Zavrtanik, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We test the predictions of hadronic interaction models regarding the depth of maximum of air-shower profiles, $X_{max}$, and ground-particle signals in water-Cherenkov detectors at 1000 m from the shower core, $S(1000)$, using the data from the fluorescence and surface detectors of the Pierre Auger Observatory. The test consists in fitting the measured two-dimensional ($S(1000)$, $X_{max}$) distributions using templates for simulated air showers produced with hadronic interaction models EPOS-LHC, QGSJet II-04, Sibyll 2.3d and leaving the scales of predicted $X_{max}$ and the signals from hadronic component at ground as free fit parameters. The method relies on the assumption that the mass composition remains the same at all zenith angles, while the longitudinal shower development and attenuation of ground signal depend on the mass composition in a correlated way. The analysis was applied to 2239 events detected by both the fluorescence and surface detectors of the Pierre Auger Observatory with energies between $10^{18.5}$ to $10^{19.0}$ eV and zenith angles below $60^\circ$. We found, that within the assumptions of the method, the best description of the data is achieved if the predictions of the hadronic interaction models are shifted to deeper $X_{max}$ values and larger hadronic signals at all zenith angles. Given the magnitude of the shifts and the data sample size, the statistical significance of the improvement of data description using the modifications considered in the paper is larger than $5\sigma$ even for any linear combination of experimental systematic uncertainties., Comment: Published version
- Published
- 2024
- Full Text
- View/download PDF
246. A research-informed graphical tool to visually approach Gauss' and Stokes' theorems in vector calculus
- Author
-
Hahn, Larissa, Blaue, Simon, and Klein, Pascal
- Subjects
Physics - Physics Education - Abstract
Gauss' and Stokes' theorems are fundamental results in vector calculus and important tools in physics and engineering. When students are asked to describe the meaning of Gauss' divergence theorem, they often use statements like this: "The sum of all sources of a vector field in a region gives the net flux out of the region". In order to raise this description to a mathematically sound level of understanding, we present an educational approach based on the visual interpretation of the vector differential operators, i.e. divergence and curl. As a starting point, we use simple vector field diagrams for a qualitative approach to connect both sides of the integral theorems, and present an interactive graphical tool to support this connection. The tool allows to visualise two-dimensional vector fields, to specify vector decomposition, to evaluate divergence and curl point wise, and to draw rectangles to determine surface and line integrals. From a meta-perspective, we situate this educational approach into learning with (multiple) representations. Based on prior research, the graphical tool addresses various learning difficulties of vector fields that are connected to divergence and curl. The tool was incorporated into the weekly lecture-based recitations of Physics II (electromagnetism) in 2022 and 2023, and we assessed various educational outcome measures. The students overall reported the tool to be intuitive and user-friendly (level of agreement $76\%$, $N=125$), considered it helpful for understanding and recommended its use for introductory physics courses (level of agreement $65\%$, $N=65$)., Comment: 18 pages, 7 figures, 1 table, submitted to European Journal of Physics
- Published
- 2024
247. Constraints on axion-like particles with the Perseus Galaxy Cluster with MAGIC
- Author
-
MAGIC Collaboration, Abe, H., Abe, S., Abhir, J., Acciari, V. A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Baack, D., Babić, A., Baquero, A., de Almeida, U. Barres, Barrio, J. A., Batković, I., Baxter, J., González, J. Becerra, Bednarek, W., Bernardini, E., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Ceribella, G., Chai, Y., Cifuentes, A., Cikota, S., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Del Popolo, A., Delgado, J., Mendez, C. Delgado, Depaoli, D., Di Pierro, F., Di Venere, L., Donini, A., Dorner, D., Doro, M., Elsaesser, D., Emery, G., Escudero, J., Fariña, L., Fattorini, A., Foffano, L., Font, L., Fukami, S., Fukazawa, Y., López, R. J. García, Garczarczyk, M., Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Godinović, N., Grau, R., Green, D., Green, J. G., Hadasch, D., Hahn, A., Hassan, T., Heckmann, L., Herrera, J., Hrupec, D., Hütten, M., Imazawa, R., Inada, T., Iotov, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kouch, P. M., Kubo, H., Kushida, J., Láinez, M., Lamastra, A., Leone, F., Lindfors, E., Linhoff, L., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Mang, N., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Martínez-Chicharro, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Morcuende, D., Nakamori, T., Nanci, C., Nava, L., Neustroev, V., Nickel, L., Rosillo, M. Nievas, Nigro, C., Nikolić, L., Nilsson, K., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Okumura, A., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Pavlović, D., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Satalecka, K., Saturni, F. G., Schleicher, B., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sciaccaluga, A., Sitarek, J., Sliusar, V., Sobczynska, D., Spolon, A., Stamerra, A., Strišković, J., Strom, D., Strzys, M., Suda, Y., Suutarinen, S., Tajima, H., Takahashi, M., Takeishi, R., Tavecchio, F., Temnikov, P., Terauchi, K., Terzić, T., Teshima, M., Tosti, L., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Acosta, M. Vazquez, Ventura, S., Verguilov, V., Viale, I., Vigorito, C. F., Vitale, V., Vovk, I., Walter, R., Will, M., and Yamamoto, T.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
Axion-like particles (ALPs) are pseudo-Nambu-Goldstone bosons that emerge in various theories beyond the standard model. These particles can interact with high-energy photons in external magnetic fields, influencing the observed gamma-ray spectrum. This study analyzes 41.3 hrs of observational data from the Perseus Galaxy Cluster collected with the MAGIC telescopes. We focused on the spectra the radio galaxy in the center of the cluster: NGC 1275. By modeling the magnetic field surrounding this target, we searched for spectral indications of ALP presence. Despite finding no statistical evidence of ALP signatures, we were able to exclude ALP models in the sub-micro electronvolt range. Our analysis improved upon previous work by calculating the full likelihood and statistical coverage for all considered models across the parameter space. Consequently, we achieved the most stringent limits to date for ALP masses around 50 neV, with cross sections down to $g_{a\gamma} = 3 \times 10^{-12}$ GeV$^{-1}$., Comment: 25 pages, 10 figures, accepted for publication in Physics of the Dark Universe
- Published
- 2024
- Full Text
- View/download PDF
248. Nonproportionality of NaI(Tl) Scintillation Detector for Dark Matter Search Experiments
- Author
-
Lee, S. M., Adhikari, G., Carlin, N., Cho, J. Y., Choi, J. J., Choi, S., Ezeribe, A. C., a, L. E. Fran., Ha, C., Hahn, I. S., Hollick, S. J., Jeon, E. J., Joo, H. W., Kang, W. G., Kauer, M., Kim, B. H., Kim, H. J., Kim, J., Kim, K. W., Kim, S. H., Kim, S. K., Kim, S. W., Kim, W. K., Kim, Y. D., Kim, Y. H., Ko, Y. J., Lee, D. H., Lee, E. K., Lee, H., Lee, H. S., Lee, H. Y., Lee, I. S., Lee, J., Lee, J. Y., Lee, M. H., Lee, S. H., Lee, Y. J., Leonard, D. S., Luan, N. T., Manzato, B. B., Maruyama, R. H., Neal, R. J., Nikkel, J. A., Olsen, S. L., Park, B. J., Park, H. K., Park, H. S., Park, J. C., Park, K. S., Park, S. D., Pitta, R. L. C., Prihtiadi, H., Ra, S. J., Rott, C., Shin, K. A., Cavalcante, D. F. F. S., Scarff, A., Son, M. K., Spooner, N. J. C., Truc, L. T., Yang, L., and Yu, G. H.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary $\gamma$ spectroscopy, measures light yields across diverse energy levels from full-energy $\gamma$ peaks produced by the decays of various isotopes. These $\gamma$ peaks of interest were produced by decays supported by both long and short-lived isotopes. Analyzing peaks from decays supported only by short-lived isotopes presented a unique challenge due to their limited statistics and overlapping energies, which was overcome by long-term data collection and a time-dependent analysis. A key achievement is the direct measurement of the 0.87 keV light yield, resulting from the cascade following electron capture decay of $^{22}$Na from internal contamination. This measurement, previously accessible only indirectly, deepens our understanding of NaI(Tl) scintillator behavior in the region of interest for dark matter searches. This study holds substantial implications for background modeling and the interpretation of dark matter signals in NaI(Tl) experiments., Comment: 12 pages, 7 figures
- Published
- 2024
- Full Text
- View/download PDF
249. A deep learning framework for jointly extracting spectra and source-count distributions in astronomy
- Author
-
Wolf, Florian, List, Florian, Rodd, Nicholas L., and Hahn, Oliver
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Computer Science - Machine Learning - Abstract
Astronomical observations typically provide three-dimensional maps, encoding the distribution of the observed flux in (1) the two angles of the celestial sphere and (2) energy/frequency. An important task regarding such maps is to statistically characterize populations of point sources too dim to be individually detected. As the properties of a single dim source will be poorly constrained, instead one commonly studies the population as a whole, inferring a source-count distribution (SCD) that describes the number density of sources as a function of their brightness. Statistical and machine learning methods for recovering SCDs exist; however, they typically entirely neglect spectral information associated with the energy distribution of the flux. We present a deep learning framework able to jointly reconstruct the spectra of different emission components and the SCD of point-source populations. In a proof-of-concept example, we show that our method accurately extracts even complex-shaped spectra and SCDs from simulated maps., Comment: 8 pages, 1 figure, NeurIPS 2023, Accepted at NeurIPS 2023 ML4PS workshop
- Published
- 2024
250. Broadband miniaturized spectrometers with a van der Waals tunnel diode
- Author
-
Uddin, MD Gius, Das, Susobhan, Shafi, Abde Mayeen, Wang, Lei, Cui, Xiaoqi, Nigmatulin, Fedor, Ahmed, Faisal, Liapis, Andreas C., Cai, Weiwei, Yang, Zongyin, Lipsanen, Harri, Hasan, Tawfique, Yoon, Hoon Hahn, and Sun, Zhipei
- Subjects
Physics - Optics - Abstract
Miniaturized spectrometers are of immense interest for various on-chip and implantable photonic and optoelectronic applications. State-of-the-art conventional spectrometer designs rely heavily on bulky dispersive components (such as gratings, photodetector arrays, and interferometric optics) to capture different input spectral components that increase their integration complexity. Here, we report a high-performance broadband spectrometer based on a simple and compact van der Waals heterostructure diode, leveraging a careful selection of active van der Waals materials -- molybdenum disulfide and black phosphorus, their electrically tunable photoresponse, and advanced computational algorithms for spectral reconstruction. We achieve remarkably high peak wavelength accuracy of ~2 nanometers, and broad operation bandwidth spanning from ~500 to 1600 nanometers in a device with a ~30x20 {\mu}m2 footprint. This diode-based spectrometer scheme with broadband operation offers an attractive pathway for various applications, such as sensing, surveillance and spectral imaging.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.