Damien Freyssenet, Hubert Vidal, Audrey Bergouignan, Alexandre Zahariev, Martine Laville, Stéphane Blanc, Edwina Antoun, Carine Platat, Isabelle Chery, Etienne Lefai, Chantal Simon, Laure Gabert, Dale A. Schoeller, Iman Momken, Sylvie Normand, Département Ecologie, Physiologie et Ethologie (DEPE-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Department of Nutritional Sciences, University of Wisconsin-Madison, Faculté de médecine (EA1801), Institut Multidisciplinaire de Biochimie des Lipides (IMBL), Covalab-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RH), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-CHU Saint-Etienne-Hospices Civils de Lyon (HCL)-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF), Centre de recherche en nutrition humaine de Lyon, Faculté de médecine Laennec - Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM ), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-CHU Saint-Etienne-Hospices Civils de Lyon (HCL)-CHU Grenoble
International audience; BACKGROUND: Previous studies suggested that physical activity energy expenditure (AEE) is a major determinant of dietary fat oxidation, which is a central component of fat metabolism and body weight regulation. OBJECTIVE: We tested this hypothesis by investigating the effect of contrasted physical activity levels on dietary saturated and monounsaturated fatty acid oxidation in relation to insulin sensitivity while controlling energy balance. DESIGN: Sedentary lean men (n = 10) trained for 2 mo according to the current guidelines on physical activity, and active lean men (n = 9) detrained for 1 mo by reducing structured and spontaneous activity. Dietary [d31]palmitate and [1-(13)C]oleate oxidation and incorporation into triglyceride-rich lipoproteins and nonesterified fatty acid, AEE, and muscle markers were studied before and after interventions. RESULTS: Training increased palmitate and oleate oxidation by 27% and 20%, respectively, whereas detraining reduced them by 31% and 13%, respectively (P < 0.05 for all). Changes in AEE were positively correlated with changes in oleate (R(2) = 0.62, P < 0.001) and palmitate (R(2) = 0.66, P < 0.0001) oxidation. The d31-palmitate appearance in nonesterified fatty acid and very-low-density lipoprotein pools was negatively associated with changes in fatty acid translocase CD36 (R(2) = 0.30), fatty acid transport protein 1 (R(2) = 0.24), and AcylCoA synthetase long chain family member 1 (ACSL1) (R(2) = 0.25) expressions and with changes in fatty acid binding protein expression (R(2) = 0.33). The d31-palmitate oxidation correlated with changes in ACSL1 (R(2) = 0.39) and carnitine palmitoyltransferase 1 (R(2) = 0.30) expressions (P < 0.05 for all). Similar relations were observed with oleate. Insulin response was associated with AEE (R(2) = 0.34, P = 0.02) and oleate (R(2) = 0.52, P < 0.01) and palmitate (R(2) = 0.62, P < 001) oxidation. CONCLUSION: Training and detraining modified the oxidation of the 2 most common dietary fats, likely through a better trafficking and uptake by the muscle, which was negatively associated with whole-body insulin sensitivity.