201. Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector
- Author
-
Daniel Lincot, Nir Dahan, Jean-Jacques Greffet, Zacharie Jehl, Jean-François Guillemoles, Negar Naghavi, Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Laboratoire Charles Fabry / Naphel, Laboratoire Charles Fabry (LCF), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)
- Subjects
Materials science ,02 engineering and technology ,01 natural sciences ,Collimated light ,law.invention ,Atmospheric radiative transfer codes ,Optics ,Electric Power Supplies ,law ,0103 physical sciences ,Bidirectional scattering distribution function ,Solar cell ,Radiative transfer ,Solar Energy ,Scattering, Radiation ,Computer Simulation ,Reflection coefficient ,Absorption (electromagnetic radiation) ,Lenses ,010302 applied physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Scattering ,business.industry ,Equipment Design ,Models, Theoretical ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Equipment Failure Analysis ,Energy Transfer ,Metals ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,business - Abstract
International audience; We investigate the optical absorption in a thin Cu(In,Ga)Se2 solar cell with a Lambertian white paint beneath a transparent back contact. Although this configuration has been proposed more than 30 years ago, it turns out that rigorous simulation of Maxwell's equations demand powerful numerical calculations. This type of approach is time consuming and does not provide a physical insight in the absorption mechanisms. Here, we use the radiative transfer equation to deal with multiple scattering of the diffuse part of the light. The collimated part is treated accounting for wave effects. Our model is in good agreement with optical measurements.
- Published
- 2013
- Full Text
- View/download PDF