201. Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball
- Author
-
Cheng-shi Huang, Zhi-jie Jiang, and Yan-fu Xue
- Subjects
product-type operator ,boundedness ,compactness ,mixed-norm space ,weighted-type space ,essential norm ,hilbert-schmidt norm ,Mathematics ,QA1-939 - Abstract
Let $ u_{j} $ be the holomorphic functions on the open unit ball $ \mathbb{B} $ in $ \mathbb{C}^{n} $, $ j = \overline{0, m} $, $ \varphi $ a holomorphic self-map of $ \mathbb{B} $, and $ \Re^{j} $ the $ j $th iterated radial derivative operator. In this paper, the boundedness and compactness of the sum operator $ \mathfrak{S}^m_{\vec{u}, \varphi} = \sum_{j = 0}^m M_{u_j}C_\varphi\Re^j $ from the mixed-norm space $ H(p, q, \phi) $, where $ 0 < p, q < +\infty $, and $ \phi $ is normal, to the weighted-type space $ H^\infty_\mu $ are characterized. For the mixed-norm space $ H(p, q, \phi) $, $ 1\leq p < +\infty $, $ 1 < q < +\infty $, the essential norm estimate of the operator is given, and the Hilbert-Schmidt norm of the operator on the weighted Bergman space $ A^2_\alpha $ is also calculated.
- Published
- 2022
- Full Text
- View/download PDF