201. Lineage Tracing of Inducible Fluorescently-Labeled Stem Cells in the Adult Mouse Brain.
- Author
-
Jensen GS, Willows JW, Breault DT, and Townsend KL
- Subjects
- Animals, Brain metabolism, Brain surgery, Mice, Mice, Transgenic, Stem Cells metabolism, Tetracycline pharmacology, Doxycycline pharmacology, Trans-Activators metabolism
- Abstract
A telomerase reverse transcriptase (Tert) lineage-tracing mouse line was developed to investigate the behavior and fate of adult tissue stem cells, by crossing the 'Tet-On' system oTet-Cre mouse with a novel reverse tetracycline transactivator (rtTA) transgene linked to the Tert promoter, which we have demonstrated marks a novel population of adult brain stem cells. Here, administration of the tetracycline derivative doxycycline to mTert-rtTA::oTet-Cre mice will indelibly mark a population of cells that express a 4.4 kb fragment of the promoter region of the gene Tert. When combined the Rosa-mTmG reporter, mTert-rtTA::oTet-Cre::Rosa-mTmG mice will express membrane tdTomato (mTomato) until doxycycline treatment induces the replacement of mTomato expression with membrane EGFP (mGFP) in cells that also express Tert. Therefore, when these triple-transgenic lineage tracing mice receive doxycycline (the "pulse" period during which TERT expressing cells are marked), these cells will become indelibly marked mGFP+ cells, which can be tracked for any desirable amount of time after doxycycline removal (the "chase" period), even if Tert expression is subsequently lost. Brains are then perfusion-fixed and processed for immunofluorescence and other downstream applications in order to interpret changes to stem cell activation, proliferation, lineage commitment, migration to various brain niches, and differentiation to mature cell types. Using this system, any rtTA mouse can be mated to oTet-Cre and a Rosa reporter to conduct doxycycline-inducible "pulse-chase" lineage tracing experiments using markers of stem cells.
- Published
- 2022
- Full Text
- View/download PDF