248 results on '"Grollier, Julie"'
Search Results
202. Response to noise of a vortex based spin transfer nano-oscillator
- Author
-
Grimaldi, Eva, primary, Dussaux, Antoine, additional, Bortolotti, Paolo, additional, Grollier, Julie, additional, Pillet, Grégoire, additional, Fukushima, Akio, additional, Kubota, Hitoshi, additional, Yakushiji, Kay, additional, Yuasa, Shinji, additional, and Cros, Vincent, additional
- Published
- 2014
- Full Text
- View/download PDF
203. Renversement d' aimantation par injection d' un courant polarise en spin
- Author
-
Grollier, Julie, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Université Pierre et Marie Curie - Paris VI, and Fert Albert
- Subjects
GMR ,magnetoresistance geante ,transfert de spin ,domain wall ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
This thesis is dedicated to the experimental study of the spin transfer effect. This mecanism was introduced theoratically in 1996 by J. Slonczewski. It allows to switch the magnetization of a ferromagnet without any applied field, only by injection of a spin polarized current and subsequent transfer of spin towards the ferromagnet. High current densities (about 107 A.cm-2), are required to reverse a magnetization by spin tranfer. Experimental evidence of the spin transfer effect can then only be reached by processing nanostructures. We have followed two different paths in order to caracterize this new spin transfer effect between a current and a magnetization. On one hand, similarly to the very first experimental results obtained at Cornell University in 2000, we have studied the effect in submicron Co/Cu/Co magnetic pillars. We have clearly evidenced the magnetization reversal by a spin polarized current at zero field. We have then focused on the field dependence of the critical curents. This study has allowed us to draw, experimentally as well as theoratically, the field vs. current phase diagram, bringing out important informations concerning the microscopic mecanisms at the origin of the magnetization reversal by spin injection. The second part of my thesis focuses on the case of Co/Cu/NiFe spin-valve stripes, in which the magnetization reversal occurs by magnetic domain wall (DW) motion. We have shown that this motion can be induced by transfer of spin from a spin-polarized current. When the magnetic field is close to zero, a DW can be displaced between pinning centers, using only current injection. In agreement with the Berger model, the motion occurs in different directions when the sign of the current is changed. The involved current densities in order to achieve DW motion are of the order of a few 106 A/cm², one order of magnitude lower than the currents required to reverse the magnetization in pillar-like structures. This measurements evidence for the first time, directly and in real-time, DW displacement by spin transfer in magnetic nanostructures.; Cette thèse est consacrée à l'étude expérimentale du phénomène de transfert de spin. Ce mécanisme, introduit théoriquement en 1996 par J. Slonczewski, permet d'orienter l'aimantation d'un matériau ferromagnétique sans champ appliqué, mais seulement par injection d'un courant polarisé en spin et transfert de spin vers le matériau considéré. Les fortes densités de courant à injecter pour observer l'effet, de l'ordre de 107 A.cm-2, imposent le recours à des nanostructures. Nous avons suivi deux voies pour caractériser cet effet nouveau de transfert de spin depuis un courant vers une aimantation. D'une part, à l'instar des tout premiers résultats expérimentaux obtenus à Cornell University en 2000, nous avons étudié cet effet dans des piliers magnétiques submicroniques de Co/Cu/Co. Nous avons pu clairement mettre en évidence le renversement d'aimantation par un courant polarisé en spin a champ nul. Ensuite, nous nous sommes intéressés à la dépendance en champ des courants critiques. Cette étude approfondie nous a permis de tracer le diagramme de phase champ-courant, nous fournissant des informations importantes quant aux mécanismes microscopiques à l'origine du phénomène de renversement d'aimantation par injection de spin. La deuxième partie de ma thèse concerne le cas des barreaux de vanne de spin Co/Cu/NiFe dans lesquels la modification d'aimantation est due au déplacement de paroi magnétique induit par transfert de spin à partir d'un courant polarisé en spin. Pour des champs proche de zéro, une paroi magnétique peut être déplacée uniquement sous l'action du courant entre des centres de piégeage et, en accord avec les conclusions du modèle de Berger, le déplacement s'effectue dans des directions opposées pour des courants opposés. La densité de courant critique requise pour déplacer la paroi est de l'ordre de quelques 106 A/cm², un ordre de grandeur plus faible que les courants nécessaires pour entraîner un renversement d'aimantation dans les structures multicouches de type piliers. Ces mesures constituent la première mise en évidence directe et en temps réel de déplacement de parois par transfert de spin dans des nanostructures magnétiques.
- Published
- 2003
204. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks
- Author
-
Sampaio, Joao, primary, Lequeux, Steven, additional, Metaxas, Peter J., additional, Chanthbouala, Andre, additional, Matsumoto, Rie, additional, Yakushiji, Kay, additional, Kubota, Hitoshi, additional, Fukushima, Akio, additional, Yuasa, Shinji, additional, Nishimura, Kazumasa, additional, Nagamine, Yoshinori, additional, Maehara, Hiroki, additional, Tsunekawa, Koji, additional, Cros, Vincent, additional, and Grollier, Julie, additional
- Published
- 2013
- Full Text
- View/download PDF
205. Déplacement de paroi par injection d un fort courant continu: contrôle de la configuration magnétique d une vanne de spin
- Author
-
Grollier, Julie, Lacour, Daniel, Cros, Vincent, Hamzić, Amir, Vaures, Annie, Fert, Albert, Adam, D., and Faini, Giancarlo
- Subjects
electronique de spin ,déplacement de paroi ,vanne de spin - Abstract
Nous présenterons des expériences de déplacement de paroi par injection d un fort courant dc effectuées sur des barreaux de CoO/Co/Cu/NiFe. Ces barreaux, de largeur 1 micron et de longueur 20 microns, ont été réalisés par lithographie électronique. Une constriction a été réalisée a 1/3 de la longueur totale du barreau. Elle agit comme centre de piégeage pour paroi magnétique, comme le prouvent les plateaux de la courbe de magnetoresistance géante (GMR) situés a un état intermédiaire (1/3 or 2/3) entre les résistances des configurations parallele (P) et antiparallele (AP). L effet de GMR présent dans de tels échantillons est utilisé pour détecter la configuration magnétique. Nous montrons par des mesures de transport électrique que, une fois piégée dans la constriction, la paroi peut etre déplacée par injection d un courant dc supérieur a un courant critique de l ordre de 10^7A/cm^2 . Nous discuterons des différentes origines possibles de l effet, i.e. le champ magnétique local créé par le courant et/ou le transfert de spin a partir d un courant polarisé en spin. Nous montrerons qu il est envisageable d utiliser cet effet pour contrôler la configuration magnétique d une vanne de spin a l échelle de temps de la nanoseconde.
- Published
- 2002
206. Dépendance en champ du renversement d aimantation par injection d un courant polarisé en spin: comparaison modeles/experiences
- Author
-
Grollier, Julie, Cros, Vincent, Jaffres, Henry, Hamzić, Amir, George, Jean-Marie, Faini, Giancarlo , Ben Youssef, J., Le Gall, H., and Fert, Albert
- Subjects
renversement d aimantation ,proprietes electroniques - Abstract
Nous présentons des résultats expérimentaux concernant le renversement d aimantation par injection d un courant polarisé en spin dans des piliers submicroniques constitués d une tricouche Co 15nm/ Cu 10nm/ Co 2.5 nm. Les expériences réalisées a champ nul sont en accord avec les résultats précédents obtenus sur des piliers similaires . De plus, nous étudions la dépendance en champ des courants critiques. Deux régimes sont clairement mis en évidence, qui dépendent de l amplitude du champ magnétique appliqué par rapport a un champ d anisotropie.
- Published
- 2002
207. Current-induced domain-wall motion
- Author
-
Grollier, Julie, Cros, Vincent, Hamzić, Amir, Lacour, Daniel, Vaures, Annie, Fert, Albert, Adam, D., and Faini, Giancarlo
- Subjects
domain-wall motion - Abstract
none
- Published
- 2002
208. Injecting spins (with focus on spin injection into semiconductors and experiments of magnetization reversal by spin injection)
- Author
-
Fert, Albert, Cros, Vincent, George, Jean-Marie, Grollier, Julie, Hamzić, Amir, Jaffres, Henry, Faini, Giancarlo, Ben Youssef, J., and Le Gall, H.
- Subjects
Condensed Matter::Materials Science ,Condensed Matter::Strongly Correlated Electrons ,spin injection ,magnetic semiconducors ,magnetization reversal - Abstract
The talk will review the experimental data and the theoretical interpretation of the spin injection in two topics in the field of spin electronics: diluted magnetic ferromagnets (GaMnAs) and magnetization reversal by spin injection in pillar-shaped Co/Cu/Co trilayers.
- Published
- 2002
209. Current-induced domain wall motion in spin-valve stripes with different constriction geometries
- Author
-
Grollier, Julie, Cros, Vincent, Hamzić, Amir, Lacour, Daniel, Vaures, Annie, Fert, Albert, Adam, D., and Faini, Giancarlo
- Subjects
spintronics ,spin injection ,domain wall motion - Abstract
We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are from 1 micron down to 0, 3 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by electron beam lithography. A set of two triangular-shaped constrictions are placed at 1/3 of the total length on either side of the stripe and is a pinning center for the magnetic domain wall, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. The GMR signal is used to detect the position of the domain wall along the stripe. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. The striking result is that the direction of the domain wall displacement does not depend on the sign of the injected current. This effect has been observed at both low (3K) and room temperature, which excludes a purely thermally activated mechanism. We discuss the different possible origins of this effect, i.e. the local magnetic field created by the current and/or spin transfer exerted by the spin-polarized conduction electrons
- Published
- 2002
210. Field dependence of the magnetic switching induced by a spin polarized current: a probe for theoretical models
- Author
-
Grollier, Julie, Cros, Vincent, Jaffres, Henry, Hamzić, Amir, George, Jean-Marie, Faini, Giancarlo , Ben Youssef, J., Le Gall, H., and Fert, Albert
- Subjects
spintronics ,magnetization reversal mechanisms ,magnetic properties of interfaces (multilayers ,superlattices ,heterostructures) ,electronic transport in interface structures - Abstract
We present experimental results on the magnetization reversal driven by a spin polarized current in pillar-shaped Co (15nm)/Cu (10 nm)/Co (2.5 nm) trilayers. Besides experiments performed at zero field in agreement with previous results on similar pillars, we also study the field dependence of the critical currents and clearly evidence the existence of two regimes according to the amplitude of the applied field H_appl compared to an anisotropy field H_an. For H_appl < H_an, the reversals from parallel to antiparallel and vice versa, are sharp as the respective critical currents are reached and the resulting R(I) curve is hysteretic. For H_appl > H_an, the reversals are much smoother and fully reversible. Up to now, two theoretical approaches have been proposed in order to calculate the current induced torque. The model based on a direct interaction between the magnetic moment carried by the conduction electrons and the local magnetization is unable to explain even qualitatively these later results. On the contrary, we are able to interpret them correctly in the frame of the spin transfer model using a diffusive approach. We calculate in detail the spin polarization of the conduction electron using the Valet-Fert model developed for the CPP-GMR and the critical currents extracted from the Landau-Lifschitz-Gilbert equation in presence of an external applied field. The comparison with our experimental results leads us to the conclusion that only the spin transfer approach is able to describe properly the properties of the spin current induced magnetization reversal.
- Published
- 2002
211. Spintronic devices as key elements for energy-efficient neuroinspired architectures.
- Author
-
Locatelli, Nicolas, Vincent, Adrien F., Mizrahi, Alice, Friedman, Joseph S., Vodenicarevic, Damir, Kim, Joo-Von, Klein, Jacques-Olivier, Zhao, Weisheng, Grollier, Julie, and Querlioz, Damien
- Published
- 2015
212. Renversement d'aimantation par injection de spin des piliers de type Co/Cu/Co
- Author
-
Grollier, Julie, Cros, Vincent, Hamzić, Amir, George, Jean-Marie, Jaffres, Henry, Fert, Albert, Faini, Giancarlo, Ben Youssef, J., Le Gall, H., and Petroff, F.
- Abstract
Le renversement de l'aimantation d'une couche magnétique, par injection d'un courant polarisé en spin à partir d'une autre couche magnétique, était observé dans le Co(15nm)/Cu(10nm)/Co(2.5nm) piliers. Le renversement d'aimantation par injection de courant résulte d'effets d'accumulation de spin directement impliqués dans la GMR en courant perpendiculaire.
- Published
- 2001
213. Magnetization reversal by spin injection: experiments and theory
- Author
-
George, Jean-Marie, Grollier, Julie, Jaffres, Henry, Hamzić, Amir, Cros, Vincent, Faini, Giancarlo, Ben Youssef, J., Le Gall, H., and Fert, Albert
- Subjects
magnetization reversal ,spin injection ,spin electronics - Abstract
We present experiments of the magnetization reversal by spin injection obtained on the pillar-shaped Co/Cu/Co trilayers. The pillars are fabricated by e- beam lithography and reactive ion etching. Their small section (200 x 600 nm^2) allowed the injection a current density of about 10^7 A/cm^2. Our data confirm similar previous results by the Cornell's group. In addition, we present a new type of experiment, which also evidences clearly the control of the magnetic configuration by the current intensity. The interpretation is based on the Slonczewski’s equations with a calculation of the current spin polarization based on the VF model of CPP-GMR. This type of calculation predicts right order of magnitude of the critical currents, but some discrepancy between calculation and experiments for the critical current asymmetry and their field dependence remains.
- Published
- 2001
214. Retournement d'aimantation par injection d'un courant polarise en spin
- Author
-
Grollier, Julie, Hamzić, Amir, Cros, Vincent, George, Jean-Marie, Fert, Albert, Faini, Giancarlo, Ben Youssef, J., Le Gall, H., Noguera, Claudine, and Pesty, François
- Abstract
Le renversement de l'aimantation d'une couche magnétique par injection d'un courant polarisé en spin à partir d'une autre couche magnétique, jouant le rôle de polariseur de spin, est un nouveau phénomène proposé par Slonczewski. Nos observations expérimentales dans le Co(15nm)/Cu(10nm)/Co(2.5nm) piliers montrent la possibilité d'utiliser ce phénomène pour la commande de tout dispositif micro magnétique ou d'électronique de spin. Du point de vue de la physique fondamentale, le renversement d'aimantation par injection de courant en spin est exactement l'inverse de la GMR. Plus précisément, le renversement d'aimantation par injection de courant résulte d'effets d'accumulation de spin directement impliqués dans la GMR en courant perpendiculaire.
- Published
- 2000
215. Les Nano-Oscillateurs à Transfert de Spin dans les Nanofils Multicouches Co/Cu Electrodéposés
- Author
-
UCL - SST/IMCN/BSMA - Bio and soft matter, Russian Academy of Sciences - A. M. Prokhorov General Physics Institute, Unité Mixte de physique CNRS/THALES (France) - Thales, Abreu Araujo, Flavio, Antohe, Vlad, Darques, Michaël, Piraux, Luc, Khvalkovskiy, Alexey, Bouzehouane, Karim, Grollier, Julie, Zvezdin, Konstantin A., Cros, Vincent, UCL - SST/IMCN/BSMA - Bio and soft matter, Russian Academy of Sciences - A. M. Prokhorov General Physics Institute, Unité Mixte de physique CNRS/THALES (France) - Thales, Abreu Araujo, Flavio, Antohe, Vlad, Darques, Michaël, Piraux, Luc, Khvalkovskiy, Alexey, Bouzehouane, Karim, Grollier, Julie, Zvezdin, Konstantin A., and Cros, Vincent
- Published
- 2010
216. Enhanced stability in spin transfer nanopillars due to a Fe/Gd/Fe trilayer
- Author
-
Romera, Miguel, primary, Grollier, Julie, additional, Collin, Sophie, additional, Devolder, Thibaut, additional, Cros, Vincent, additional, Muñoz, Manuel, additional, and Prieto, José L., additional
- Published
- 2013
- Full Text
- View/download PDF
217. High domain wall velocities via spin transfer torque using vertical current injection
- Author
-
Metaxas, Peter J., primary, Sampaio, Joao, additional, Chanthbouala, André, additional, Matsumoto, Rie, additional, Anane, Abdelmadjid, additional, Fert, Albert, additional, Zvezdin, Konstantin A., additional, Yakushiji, Kay, additional, Kubota, Hitoshi, additional, Fukushima, Akio, additional, Yuasa, Shinji, additional, Nishimura, Kazumasa, additional, Nagamine, Yoshinori, additional, Maehara, Hiroki, additional, Tsunekawa, Koji, additional, Cros, Vincent, additional, and Grollier, Julie, additional
- Published
- 2013
- Full Text
- View/download PDF
218. Giant Electroresistance of Super-tetragonal BiFeO3-Based Ferroelectric Tunnel Junctions
- Author
-
Yamada, Hiroyuki, primary, Garcia, Vincent, additional, Fusil, Stéphane, additional, Boyn, Sören, additional, Marinova, Maya, additional, Gloter, Alexandre, additional, Xavier, Stéphane, additional, Grollier, Julie, additional, Jacquet, Eric, additional, Carrétéro, Cécile, additional, Deranlot, Cyrile, additional, Bibes, Manuel, additional, and Barthélémy, Agnès, additional
- Published
- 2013
- Full Text
- View/download PDF
219. ChemInform Abstract: Magnetic Domain Wall Motion by Spin Transfer
- Author
-
Grollier, Julie, primary, Chanthbouala, A., additional, Matsumoto, R., additional, Anane, A., additional, Cros, V., additional, Nguyen van Dau, F., additional, and Fert, Albert, additional
- Published
- 2012
- Full Text
- View/download PDF
220. A ferroelectric memristor
- Author
-
Chanthbouala, André, primary, Garcia, Vincent, additional, Cherifi, Ryan O., additional, Bouzehouane, Karim, additional, Fusil, Stéphane, additional, Moya, Xavier, additional, Xavier, Stéphane, additional, Yamada, Hiroyuki, additional, Deranlot, Cyrile, additional, Mathur, Neil D., additional, Bibes, Manuel, additional, Barthélémy, Agnès, additional, and Grollier, Julie, additional
- Published
- 2012
- Full Text
- View/download PDF
221. Commensurability and chaos in magnetic vortex oscillations
- Author
-
Petit-Watelot, Sebastien, primary, Kim, Joo-Von, additional, Ruotolo, Antonio, additional, Otxoa, Ruben M., additional, Bouzehouane, Karim, additional, Grollier, Julie, additional, Vansteenkiste, Arne, additional, Van de Wiele, Ben, additional, Cros, Vincent, additional, and Devolder, Thibaut, additional
- Published
- 2012
- Full Text
- View/download PDF
222. Solid-state memories based on ferroelectric tunnel junctions
- Author
-
Chanthbouala, André, primary, Crassous, Arnaud, additional, Garcia, Vincent, additional, Bouzehouane, Karim, additional, Fusil, Stéphane, additional, Moya, Xavier, additional, Allibe, Julie, additional, Dlubak, Bruno, additional, Grollier, Julie, additional, Xavier, Stéphane, additional, Deranlot, Cyrile, additional, Moshar, Amir, additional, Proksch, Roger, additional, Mathur, Neil D., additional, Bibes, Manuel, additional, and Barthélémy, Agnès, additional
- Published
- 2011
- Full Text
- View/download PDF
223. Spin-Torque Diode Measurements of MgO-Based Magnetic Tunnel Junctions with Asymmetric Electrodes
- Author
-
Matsumoto, Rie, primary, Chanthbouala, André, additional, Grollier, Julie, additional, Cros, Vincent, additional, Fert, Albert, additional, Nishimura, Kazumasa, additional, Nagamine, Yoshinori, additional, Maehara, Hiroki, additional, Tsunekawa, Koji, additional, Fukushima, Akio, additional, and Yuasa, Shinji, additional
- Published
- 2011
- Full Text
- View/download PDF
224. Frequency Converter Based on Nanoscale MgO Magnetic Tunnel Junctions
- Author
-
Georges, Benoit, primary, Grollier, Julie, additional, Fukushima, Akio, additional, Cros, Vincent, additional, Marcilhac, Bruno, additional, Crété, Denis-Gérard, additional, Kubota, Hitoshi, additional, Yakushiji, Kay, additional, Mage, Jean-Claude, additional, Fert, Albert, additional, Yuasa, Shinji, additional, and Ando, Koji, additional
- Published
- 2009
- Full Text
- View/download PDF
225. Spin-torque-induced switching and precession in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions
- Author
-
Matsumoto, Rie, primary, Fukushima, Akio, additional, Yakushiji, Kay, additional, Yakata, Satoshi, additional, Nagahama, Taro, additional, Kubota, Hitoshi, additional, Katayama, Toshikazu, additional, Suzuki, Yoshishige, additional, Ando, Koji, additional, Yuasa, Shinji, additional, Georges, Benoit, additional, Cros, Vincent, additional, Grollier, Julie, additional, and Fert, Albert, additional
- Published
- 2009
- Full Text
- View/download PDF
226. Spiking Dynamics in Dual Free Layer Perpendicular Magnetic Tunnel Junctions
- Author
-
Farcis, Louis, Teixeira, Bruno M. S., Talatchian, Philippe, Salomoni, David, Ebels, Ursula, Auffret, Stéphane, Dieny, Bernard, Mizrahi, Frank A., Grollier, Julie, Sousa, Ricardo C., and Buda-Prejbeanu, Liliana D.
- Abstract
Spintronic devices have recently attracted a lot of attention in the field of unconventional computing due to their non-volatility for short- and long-term memory, nonlinear fast response, and relatively small footprint. Here we demonstrate experimentally how voltage driven magnetization dynamics of dual free layer perpendicular magnetic tunnel junctions can emulate spiking neurons in hardware. The output spiking rate was controlled by varying the dc bias voltage across the device. The field-free operation of this two-terminal device and its robustness against an externally applied magnetic field make it a suitable candidate to mimic the neuron response in a dense neural network. The small energy consumption of the device (4–16 pJ/spike) and its scalability are important benefits for embedded applications. This compact perpendicular magnetic tunnel junction structure could finally bring spiking neural networks to sub-100 nm size elements.
- Published
- 2023
- Full Text
- View/download PDF
227. Spin-transfer torque in ferromagnetic bilayers generated by anomalous Hall effect and anisotropic magnetoresistance
- Author
-
Drouhin, Henri-Jean, Wegrowe, Jean-Eric, Razeghi, Manijeh, Taniguchi, Tomohiro, Grollier, Julie, and Stiles, M. D.
- Published
- 2016
- Full Text
- View/download PDF
228. Electrical synchronization of spin-torque oscillators driven by self-emitted high frequency current (Conference Presentation)
- Author
-
Drouhin, Henri-Jean, Wegrowe, Jean-Eric, Razeghi, Manijeh, Tsunegi, Sumito, Lebrun, Romain, Grimaldi, Eva, Jenkins, Alex S., Kubota, Hitoshi, Yakushiji, Kay, Bortolotti, Paolo, Grollier, Julie, Fukushima, Akio, Yuasa, Shinji, and Cros, Vincent
- Published
- 2016
- Full Text
- View/download PDF
229. Superparamagnetic tunnel junctions for bio-inspired computing (Conference Presentation)
- Author
-
Drouhin, Henri-Jean, Wegrowe, Jean-Eric, Razeghi, Manijeh, Grollier, Julie, Torrejon, Jacob, Riou, Mathieu, Cros, Vincent, Querlioz, Damien, Tsunegi, Sumito, Fukushima, Akio, Kubota, Hitoshi, Yuasa, Shinji, Stiles, Mark D., and Khalsa, Guru
- Published
- 2016
- Full Text
- View/download PDF
230. Solid-state memories based on ferroelectric tunnel junctions.
- Author
-
Chanthbouala, André, Crassous, Arnaud, Garcia, Vincent, Bouzehouane, Karim, Fusil, Stéphane, Moya, Xavier, Allibe, Julie, Dlubak, Bruno, Grollier, Julie, Xavier, Stéphane, Deranlot, Cyrile, Moshar, Amir, Proksch, Roger, Mathur, Neil D., Bibes, Manuel, and Barthélémy, Agnès
- Subjects
HYSTERESIS ,MAGNETIC fields ,MAGNETORESISTANCE ,FERROELECTRICITY ,DIELECTRICS - Abstract
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10
6 A cm?2 ). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ?1 × 104 A cm?2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
231. Using Memristors for Robust Local Learning of Hardware Restricted Boltzmann Machines.
- Author
-
Ernoult, Maxence, Grollier, Julie, and Querlioz, Damien
- Abstract
One of the biggest stakes in nanoelectronics today is to meet the needs of Artificial Intelligence by designing hardware neural networks which, by fusing computation and memory, process and learn from data with limited energy. For this purpose, memristive devices are excellent candidates to emulate synapses. A challenge, however, is to map existing learning algorithms onto a chip: for a physical implementation, a learning rule should ideally be tolerant to the typical intrinsic imperfections of such memristive devices, and local. Restricted Boltzmann Machines (RBM), for their local learning rule and inherent tolerance to stochasticity, comply with both of these constraints and constitute a highly attractive algorithm towards achieving memristor-based Deep Learning. On simulation grounds, this work gives insights into designing simple memristive devices programming protocols to train on chip Boltzmann Machines. Among other RBM-based neural networks, we advocate using a Discriminative RBM, with two hardware-oriented adaptations. We propose a pulse width selection scheme based on the sign of two successive weight updates, and show that it removes the constraint to precisely tune the initial programming pulse width as a hyperparameter. We also propose to evaluate the weight update requested by the algorithm across several samples and stochastic realizations. We show that this strategy brings a partial immunity against the most severe memristive device imperfections such as the non-linearity and the stochasticity of the conductance updates, as well as device-to-device variability. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
232. A quantum material spintronic resonator.
- Author
-
Xu, Jun-Wen, Chen, Yizhang, Vargas, Nicolás M., Salev, Pavel, Lapa, Pavel N., Trastoy, Juan, Grollier, Julie, Schuller, Ivan K., and Kent, Andrew D.
- Subjects
- *
SPINTRONICS , *FERROMAGNETIC materials , *TORQUE , *TRANSITION metal oxides , *ARTIFICIAL neural networks - Abstract
In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate V 2 O 3 , with Ni, Permalloy ( Ni 80 Fe 20 ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in V 2 O 3 is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the V 2 O 3 with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
233. Role of non-linear data processing on speech recognition task in the framework of reservoir computing.
- Author
-
Abreu Araujo, Flavio, Riou, Mathieu, Torrejon, Jacob, Tsunegi, Sumito, Querlioz, Damien, Yakushiji, Kay, Fukushima, Akio, Kubota, Hitoshi, Yuasa, Shinji, Stiles, Mark D., and Grollier, Julie
- Subjects
- *
ARTIFICIAL neural networks , *SPEECH perception , *AUTOMATIC speech recognition , *FEATURE extraction , *NUMERICAL analysis - Abstract
The reservoir computing neural network architecture is widely used to test hardware systems for neuromorphic computing. One of the preferred tasks for bench-marking such devices is automatic speech recognition. This task requires acoustic transformations from sound waveforms with varying amplitudes to frequency domain maps that can be seen as feature extraction techniques. Depending on the conversion method, these transformations sometimes obscure the contribution of the neuromorphic hardware to the overall speech recognition performance. Here, we quantify and separate the contributions of the acoustic transformations and the neuromorphic hardware to the speech recognition success rate. We show that the non-linearity in the acoustic transformation plays a critical role in feature extraction. We compute the gain in word success rate provided by a reservoir computing device compared to the acoustic transformation only, and show that it is an appropriate bench-mark for comparing different hardware. Finally, we experimentally and numerically quantify the impact of the different acoustic transformations for neuromorphic hardware based on magnetic nano-oscillators. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
234. Scaling up electrically synchronized spin torque oscillator networks.
- Author
-
Tsunegi, Sumito, Taniguchi, Tomohiro, Lebrun, Romain, Yakushiji, Kay, Cros, Vincent, Grollier, Julie, Fukushima, Akio, Yuasa, Shinji, and Kubota, Hitoshi
- Published
- 2018
- Full Text
- View/download PDF
235. Convolutional neural networks with radio-frequency spintronic nano-devices
- Author
-
Nathan Leroux, Arnaud De Riz, Dédalo Sanz-Hernández, Danijela Marković, Alice Mizrahi, Julie Grollier, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, and Grollier, Julie
- Subjects
FOS: Computer and information sciences ,spintronics ,radio-frequency ,Quantitative Biology::Neurons and Cognition ,[SPI] Engineering Sciences [physics] ,Computer Science - Emerging Technologies ,FOS: Physical sciences ,Physics - Applied Physics ,General Medicine ,Disordered Systems and Neural Networks (cond-mat.dis-nn) ,Applied Physics (physics.app-ph) ,Condensed Matter - Disordered Systems and Neural Networks ,neuromorphic computing ,[SPI]Engineering Sciences [physics] ,Emerging Technologies (cs.ET) ,nano-devices ,deep convolutional neural networks - Abstract
Convolutional neural networks (LeCun and Bengio 1998 The Handbook of Brain Theory and Neural Networks 255–58; LeCun, Bengio and Hinton 2015 Nature 521 436–44) are state-of-the-art and ubiquitous in modern signal processing and machine vision. Nowadays, hardware solutions based on emerging nanodevices are designed to reduce the power consumption of these networks. This is done either by using devices that implement convolutional filters and sequentially multiply consecutive subsets of the input, or by using different sets of devices to perform the different multiplications in parallel to avoid storing intermediate computational steps in memory. Spintronics devices are promising for information processing because of the various neural and synaptic functionalities they offer. However, due to their low OFF/ON ratio, performing all the multiplications required for convolutions in a single step with a crossbar array of spintronic memories would cause sneak-path currents. Here we present an architecture where synaptic communications are based on a resonance effect. These synaptic communications thus have a frequency selectivity that prevents crosstalk caused by sneak-path currents. We first demonstrate how a chain of spintronic resonators can function as synapses and make convolutions by sequentially rectifying radio-frequency signals encoding consecutive sets of inputs. We show that a parallel implementation is possible with multiple chains of spintronic resonators. We propose two different spatial arrangements for these chains. For each of them, we explain how to tune many artificial synapses simultaneously, exploiting the synaptic weight sharing specific to convolutions. We show how information can be transmitted between convolutional layers by using spintronic oscillators as artificial microwave neurons. Finally, we simulate a network of these radio-frequency resonators and spintronic oscillators to solve the MNIST handwritten digits dataset, and obtain results comparable to software convolutional neural networks. Since it can run convolutional neural networks fully in parallel in a single step with nano devices, the architecture proposed in this paper is promising for embedded applications requiring machine vision, such as autonomous driving.
- Published
- 2022
236. Role of spin-transfer torques on synchronization and resonance phenomena in stochastic magnetic oscillators
- Author
-
Grollier, Julie [Unité Mixte de Physique CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, F91767 Palaiseau (France)]
- Published
- 2016
- Full Text
- View/download PDF
237. Probing Phase Coupling Between Two Spin-Torque Nano-Oscillators with an External Source.
- Author
-
Yi Li, de Milly, Xavier, Araujo, Flavio Abreu, Klein, Olivier, Cros, Vincent, Grollier, Julie, and de Loubens, Grégoire
- Subjects
- *
TORQUE , *PHASE shift (Nuclear physics) - Abstract
Phase coupling between auto-oscillators is central for achieving coherent responses such as synchronization. Here we present an experimental approach to probe it in the case of two dipolarly coupled spin-torque vortex nano-oscillators using an external microwave field. By phase locking one oscillator to the external source, we observe frequency pulling on the second oscillator. From coupled phase equations we show analytically that this frequency pulling results from concerted actions of oscillator-oscillator and source-oscillator couplings. The analysis allows us to determine the strength and phase shift of coupling between two oscillators, yielding important information for the implementation of large interacting oscillator networks. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
238. Development of a silicon spiking neural network with memristives synapses
- Author
-
Lecerf, Gwendal, Saïghi, Sylvain, Tomas, Jean, Grollier, Julie, Pellet, Claude, O'Connor, Ian, Hebrard, Luc, and STAR, ABES
- Subjects
Résistance Memristive ,Spiking Neural Network ,Learning ,Conception Analogique ,Analog Circuit Conception ,Memristor ,Réseau de Neurones impulsionnels ,Memristive Resistor ,[SPI.TRON] Engineering Sciences [physics]/Electronics ,Apprentissage ,STDP - Abstract
Supported financially by ANR MHANN project, this work proposes an architecture ofspiking neural network in order to recognize pictures, where traditional processing units are inefficient regarding this. In 2008, a new passive electrical component had been discovered : the memristor. Its resistance can be adjusted by applying a potential between its terminals. Behaving intrinsically as artificial synapses, memristives devices can be used inside artificial neural networks.We measure the variation in resistance of a ferroelectric memristor (obtained from UMjCNRS/Thalès) similar to the biological law STDP (Spike Timing Dependant Plasticity) used with spiking neurons. With our measurements on the memristor and our network simulation (aided by INRIASaclay) we designed successively two versions of the IC. The second IC design is driven by specifications of the first IC with additional functionalists. The second IC contains two layers of a spiking neural network dedicated to learn a picture of 81 pixels. A demonstrator of hybrid neural networks will be achieved by integrating a chip of memristive crossbar interfaced with thesecond IC., Durant ces trois années de doctorat, financées par le projet ANR MHANN (MemristiveHardware Analog Neural Network), nous nous sommes intéressés au développement d’une nouvelle architecture de calculateur à l’aide de réseaux de neurones. Les réseaux de neurones artificiels sont particulièrement bien adaptés à la reconnaissance d’images et peuvent être utilisés en complément des processeurs séquentiels. En 2008, une nouvelle technologie de composant a vu le jour : le memristor. Classé comme étant le quatrième élément passif, il est possible de modifier sa résistance en fonction de la densité de courant qui le traverse et de garder en mémoire ces changements. Grâce à leurs propriétés, les composants memristifs sont des candidats idéaux pour jouer le rôle des synapses au sein des réseaux de neurones artificiels. En effectuant des mesures sur la technologie des memristors ferroélectriques de l’UMjCNRS/Thalès de l’équipe de Julie Grollier, nous avons pu démontrer qu’il était possible d’obtenir un apprentissage de type STDP (Spike Timing Dependant Plasticity) classiquement utilisé avec les réseaux de neurones impulsionnels. Cette forme d’apprentissage, inspirée de la biologie, impose une variation des poids synaptiques en fonction des évènements neuronaux. En s’appuyant sur les mesures réalisées sur ces memristors et sur des simulations provenant d’un programme élaboré avec nos partenaires de l’INRIA Saclay, nous avons conçu successivement deux puces en silicium pour deux technologies de memristors ferroélectriques. La première technologie (BTO), moins performante, a été mise de côté au profit d’une seconde technologie (BFO). La seconde puce a été élaborée avec les retours d’expérience de la première puce. Elle contient deux couches d’un réseau de neurones impulsionnels dédié à l’apprentissage d’images de 81 pixels. En la connectant à un boitier contenant un crossbar de memristors, nous pourrons réaliser un démonstrateur d’un réseau de neurones hybride réalisé avec des synapses memristives ferroélectriques.
239. Conception de réseaux de neurones sur silicium à l’aide de synapses memristives : application au traitement d’image
- Author
-
MEYER, Charly, Saighi, Sylvain, Taris, Thierry, Uhring, Wilfried Patrick, Querlioz, Damien, Tomas, Jean, Grollier, Julie, and Larras, Benoît
- Subjects
Réseau de neurones évènementiels ,Faible consommation ,Apprentissage non supervisé ,Memristor ,Caméra évènementielle
240. Training an Ising machine with equilibrium propagation.
- Author
-
Laydevant J, Marković D, and Grollier J
- Abstract
Ising machines, which are hardware implementations of the Ising model of coupled spins, have been influential in the development of unsupervised learning algorithms at the origins of Artificial Intelligence (AI). However, their application to AI has been limited due to the complexities in matching supervised training methods with Ising machine physics, even though these methods are essential for achieving high accuracy. In this study, we demonstrate an efficient approach to train Ising machines in a supervised way through the Equilibrium Propagation algorithm, achieving comparable results to software-based implementations. We employ the quantum annealing procedure of the D-Wave Ising machine to train a fully-connected neural network on the MNIST dataset. Furthermore, we demonstrate that the machine's connectivity supports convolution operations, enabling the training of a compact convolutional network with minimal spins per neuron. Our findings establish Ising machines as a promising trainable hardware platform for AI, with the potential to enhance machine learning applications., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
241. Multilayer spintronic neural networks with radiofrequency connections.
- Author
-
Ross A, Leroux N, De Riz A, Marković D, Sanz-Hernández D, Trastoy J, Bortolotti P, Querlioz D, Martins L, Benetti L, Claro MS, Anacleto P, Schulman A, Taris T, Begueret JB, Saïghi S, Jenkins AS, Ferreira R, Vincent AF, Mizrahi FA, and Grollier J
- Abstract
Spintronic nano-synapses and nano-neurons perform neural network operations with high accuracy thanks to their rich, reproducible and controllable magnetization dynamics. These dynamical nanodevices could transform artificial intelligence hardware, provided they implement state-of-the-art deep neural networks. However, there is today no scalable way to connect them in multilayers. Here we show that the flagship nano-components of spintronics, magnetic tunnel junctions, can be connected into multilayer neural networks where they implement both synapses and neurons thanks to their magnetization dynamics, and communicate by processing, transmitting and receiving radiofrequency signals. We build a hardware spintronic neural network composed of nine magnetic tunnel junctions connected in two layers, and show that it natively classifies nonlinearly separable radiofrequency inputs with an accuracy of 97.7%. Using physical simulations, we demonstrate that a large network of nanoscale junctions can achieve state-of-the-art identification of drones from their radiofrequency transmissions, without digitization and consuming only a few milliwatts, which constitutes a gain of several orders of magnitude in power consumption compared to currently used techniques. This study lays the foundation for deep, dynamical, spintronic neural networks., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
242. Neuromorphic Engineering: From Materials to Device Application.
- Author
-
Yang JJ, Grollier J, Williams RS, and Huang R
- Published
- 2023
- Full Text
- View/download PDF
243. Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations.
- Author
-
Chen X, Araujo FA, Riou M, Torrejon J, Ravelosona D, Kang W, Zhao W, Grollier J, and Querlioz D
- Abstract
Deep learning has an increasing impact to assist research, allowing, for example, the discovery of novel materials. Until now, however, these artificial intelligence techniques have fallen short of discovering the full differential equation of an experimental physical system. Here we show that a dynamical neural network, trained on a minimal amount of data, can predict the behavior of spintronic devices with high accuracy and an extremely efficient simulation time, compared to the micromagnetic simulations that are usually employed to model them. For this purpose, we re-frame the formalism of Neural Ordinary Differential Equations to the constraints of spintronics: few measured outputs, multiple inputs and internal parameters. We demonstrate with Neural Ordinary Differential Equations an acceleration factor over 200 compared to micromagnetic simulations for a complex problem - the simulation of a reservoir computer made of magnetic skyrmions (20 minutes compared to three days). In a second realization, we show that we can predict the noisy response of experimental spintronic nano-oscillators to varying inputs after training Neural Ordinary Differential Equations on five milliseconds of their measured response to a different set of inputs. Neural Ordinary Differential Equations can therefore constitute a disruptive tool for developing spintronic applications in complement to micromagnetic simulations, which are time-consuming and cannot fit experiments when noise or imperfections are present. Our approach can also be generalized to other electronic devices involving dynamics., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
244. Binding events through the mutual synchronization of spintronic nano-neurons.
- Author
-
Romera M, Talatchian P, Tsunegi S, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Cros V, Bortolotti P, Ernoult M, Querlioz D, and Grollier J
- Subjects
- Animals, Computer Simulation, Humans, Models, Neurological, Neurons physiology, Brain physiology, Cortical Synchronization physiology, Nerve Net physiology, Neural Networks, Computer
- Abstract
The brain naturally binds events from different sources in unique concepts. It is hypothesized that this process occurs through the transient mutual synchronization of neurons located in different regions of the brain when the stimulus is presented. This mechanism of 'binding through synchronization' can be directly implemented in neural networks composed of coupled oscillators. To do so, the oscillators must be able to mutually synchronize for the range of inputs corresponding to a single class, and otherwise remain desynchronized. Here we show that the outstanding ability of spintronic nano-oscillators to mutually synchronize and the possibility to precisely control the occurrence of mutual synchronization by tuning the oscillator frequencies over wide ranges allows pattern recognition. We demonstrate experimentally on a simple task that three spintronic nano-oscillators can bind consecutive events and thus recognize and distinguish temporal sequences. This work is a step forward in the construction of neural networks that exploit the non-linear dynamic properties of their components to perform brain-inspired computations., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
245. EqSpike: spike-driven equilibrium propagation for neuromorphic implementations.
- Author
-
Martin E, Ernoult M, Laydevant J, Li S, Querlioz D, Petrisor T, and Grollier J
- Abstract
Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology., Competing Interests: The authors declare no competing interests., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
246. Vowel recognition with four coupled spin-torque nano-oscillators.
- Author
-
Romera M, Talatchian P, Tsunegi S, Abreu Araujo F, Cros V, Bortolotti P, Trastoy J, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Ernoult M, Vodenicarevic D, Hirtzlin T, Locatelli N, Querlioz D, and Grollier J
- Abstract
In recent years, artificial neural networks have become the flagship algorithm of artificial intelligence
1 . In these systems, neuron activation functions are static, and computing is achieved through standard arithmetic operations. By contrast, a prominent branch of neuroinspired computing embraces the dynamical nature of the brain and proposes to endow each component of a neural network with dynamical functionality, such as oscillations, and to rely on emergent physical phenomena, such as synchronization2-6 , for solving complex problems with small networks7-11 . This approach is especially interesting for hardware implementations, because emerging nanoelectronic devices can provide compact and energy-efficient nonlinear auto-oscillators that mimic the periodic spiking activity of biological neurons12-16 . The dynamical couplings between oscillators can then be used to mediate the synaptic communication between the artificial neurons. One challenge for using nanodevices in this way is to achieve learning, which requires fine control and tuning of their coupled oscillations17 ; the dynamical features of nanodevices can be difficult to control and prone to noise and variability18 . Here we show that the outstanding tunability of spintronic nano-oscillators-that is, the possibility of accurately controlling their frequency across a wide range, through electrical current and magnetic field-can be used to address this challenge. We successfully train a hardware network of four spin-torque nano-oscillators to recognize spoken vowels by tuning their frequencies according to an automatic real-time learning rule. We show that the high experimental recognition rates stem from the ability of these oscillators to synchronize. Our results demonstrate that non-trivial pattern classification tasks can be achieved with small hardware neural networks by endowing them with nonlinear dynamical features such as oscillations and synchronization.- Published
- 2018
- Full Text
- View/download PDF
247. Interface-Induced Phenomena in Magnetism.
- Author
-
Hellman F, Hoffmann A, Tserkovnyak Y, Beach GSD, Fullerton EE, Leighton C, MacDonald AH, Ralph DC, Arena DA, Dürr HA, Fischer P, Grollier J, Heremans JP, Jungwirth T, Kimel AV, Koopmans B, Krivorotov IN, May SJ, Petford-Long AK, Rondinelli JM, Samarth N, Schuller IK, Slavin AN, Stiles MD, Tchernyshyov O, Thiaville A, and Zink BL
- Abstract
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.
- Published
- 2017
- Full Text
- View/download PDF
248. Spin-transfer torque in ferromagnetic bilayers generated by anomalous Hall effect and anisotropic magnetoresistance.
- Author
-
Taniguchi T, Grollier J, and Stiles MD
- Abstract
We propose an experimental scheme to determine the spin-transfer torque efficiency excited by the spin-orbit interaction in ferromagnetic bilayers from the measurement of the longitudinal magnetoresistace. Solving a diffusive spin-transport theory with appropriate boundary conditions gives an analytical formula of the longitudinal charge current density. The longitudinal charge current has a term that is proportional to the square of the spin-transfer torque efficiency and that also depends on the ratio of the film thickness to the spin diffusion length of the ferromagnet. Extracting this contribution from measurements of the longitudinal resistivity as a function of the thickness can give the spin-transfer torque efficiency.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.