201. Clustered Bandits
- Author
-
Bui, Loc, Johari, Ramesh, and Mannor, Shie
- Subjects
Computer Science - Learning - Abstract
We consider a multi-armed bandit setting that is inspired by real-world applications in e-commerce. In our setting, there are a few types of users, each with a specific response to the different arms. When a user enters the system, his type is unknown to the decision maker. The decision maker can either treat each user separately ignoring the previously observed users, or can attempt to take advantage of knowing that only few types exist and cluster the users according to their response to the arms. We devise algorithms that combine the usual exploration-exploitation tradeoff with clustering of users and demonstrate the value of clustering. In the process of developing algorithms for the clustered setting, we propose and analyze simple algorithms for the setup where a decision maker knows that a user belongs to one of few types, but does not know which one., Comment: 19 pages, 2 figures, under review
- Published
- 2012