201. Parametrically Activated Entangling Gates Using Transmon Qubits
- Author
-
A. Hudson, Colm A. Ryan, Nagesh Vodrahalli, Roland Smith, Eyob A. Sete, Michael J. Rust, M. P. da Silva, Nicolas Didier, Osborn Christopher Butler, T. Manning, T. El Bouayadi, Rodney Sinclair, Ting-Wai To, Damon Russell, J. Cordova, M. Pelstring, Genya Crossman, R. Maydra, Russ Renzas, Yuvraj Mohan, Riccardo Manenti, Vijay Rawat, R. Chilcott, Diego Scarabelli, Shane Caldwell, Jean-Philip Paquette, A. Bestwick, Anthony Polloreno, Alexander Papageorge, E. Acala, William J. Zeng, Michael Curtis, K. Kuang, Matthew Reagor, Guenevere E. D. K. Prawiroatmodjo, Nicholas C. Rubin, Tyler Whyland, Benjamin Bloom, Chad Rigetti, Maxwell Block, Michael Scheer, Catvu Bui, Saniya Deshpande, William A. O'Brien, Joel Angeles, Mark Suska, Lauren Capelluto, M. Lenihan, A. Bradley, Nasser Alidoust, Mehrnoosh Vahidpour, Peter J. Karalekas, D. Girshovich, Alexa Staley, Michael Selvanayagam, Johannes Otterbach, A. Marchenkov, Dane Christoffer Thompson, Sabrina Hong, Kamal Yadav, Jayss Marshall, and Nikolas Tezak more...
- Subjects
Physics ,Quantum Physics ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,Transmon ,021001 nanoscience & nanotechnology ,01 natural sciences ,Computer Science::Emerging Technologies ,Quantum mechanics ,Qubit ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Quantum Physics (quant-ph) - Abstract
We describe and implement a family of entangling gates activated by radio-frequency flux modulation applied to a tunable transmon that is statically coupled to a neighboring transmon. The effect of this modulation is the resonant exchange of photons directly between levels of the two-transmon system, obviating the need for mediating qubits or resonator modes and allowing for the full utilization of all qubits in a scalable architecture. The resonance condition is selective in both the frequency and amplitude of modulation and thus alleviates frequency crowding. We demonstrate the use of three such resonances to produce entangling gates that enable universal quantum computation: one iSWAP gate and two distinct controlled Z gates. We report interleaved randomized benchmarking results indicating gate error rates of 6% for the iSWAP (duration 135ns) and 9% for the controlled Z gates (durations 175 ns and 270 ns), limited largely by qubit coherence., Comment: As submitted. 7 pages, 6 figures more...
- Published
- 2017
- Full Text
- View/download PDF