6,693 results on '"Nagarajan, P."'
Search Results
202. Comparative analysis of metagenomic classifiers for long-read sequencing datasets
- Author
-
Marić, Josip, Križanović, Krešimir, Riondet, Sylvain, Nagarajan, Niranjan, and Šikić, Mile
- Published
- 2024
- Full Text
- View/download PDF
203. Immunotherapy in rectal cancer patients—a propensity score matched analysis of the National Cancer Database
- Author
-
Horesh, Nir, Emile, Sameh Hany, Freund, Michael R., Garoufalia, Zoe, Gefen, Rachel, Nagarajan, Arun, and Wexner, Steven D.
- Published
- 2024
- Full Text
- View/download PDF
204. Assessing tropospheric turbulence impact on VGOS telescope placement in the Indian subcontinent for the estimation of earth orientation parameters
- Author
-
Laha, Arnab, Böhm, Johannes, Böhm, Sigrid, Schartner, Matthias, Krásná, Hana, Balasubramanian, Nagarajan, and Dikshit, Onkar
- Published
- 2024
- Full Text
- View/download PDF
205. GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval
- Author
-
Arora, Daman, Kini, Anush, Chowdhury, Sayak Ray, Natarajan, Nagarajan, Sinha, Gaurav, and Sharma, Amit
- Subjects
Computer Science - Computation and Language - Abstract
Given a query and a document corpus, the information retrieval (IR) task is to output a ranked list of relevant documents. Combining large language models (LLMs) with embedding-based retrieval models, recent work shows promising results on the zero-shot retrieval problem, i.e., no access to labeled data from the target domain. Two such popular paradigms are generation-augmented retrieval or GAR (generate additional context for the query and then retrieve), and retrieval-augmented generation or RAG (retrieve relevant documents as context and then generate answers). The success of these paradigms hinges on (i) high-recall retrieval models, which are difficult to obtain in the zero-shot setting, and (ii) high-precision (re-)ranking models which typically need a good initialization. In this work, we propose a novel GAR-meets-RAG recurrence formulation that overcomes the challenges of existing paradigms. Our method iteratively improves retrieval (via GAR) and rewrite (via RAG) stages in the zero-shot setting. A key design principle is that the rewrite-retrieval stages improve the recall of the system and a final re-ranking stage improves the precision. We conduct extensive experiments on zero-shot passage retrieval benchmarks, BEIR and TREC-DL. Our method establishes a new state-of-the-art in the BEIR benchmark, outperforming previous best results in Recall@100 and nDCG@10 metrics on 6 out of 8 datasets, with up to 17% relative gains over the previous best., Comment: preprint
- Published
- 2023
206. Differentially Private Reward Estimation with Preference Feedback
- Author
-
Chowdhury, Sayak Ray, Zhou, Xingyu, and Natarajan, Nagarajan
- Subjects
Computer Science - Machine Learning ,Computer Science - Cryptography and Security - Abstract
Learning from preference-based feedback has recently gained considerable traction as a promising approach to align generative models with human interests. Instead of relying on numerical rewards, the generative models are trained using reinforcement learning with human feedback (RLHF). These approaches first solicit feedback from human labelers typically in the form of pairwise comparisons between two possible actions, then estimate a reward model using these comparisons, and finally employ a policy based on the estimated reward model. An adversarial attack in any step of the above pipeline might reveal private and sensitive information of human labelers. In this work, we adopt the notion of label differential privacy (DP) and focus on the problem of reward estimation from preference-based feedback while protecting privacy of each individual labelers. Specifically, we consider the parametric Bradley-Terry-Luce (BTL) model for such pairwise comparison feedback involving a latent reward parameter $\theta^* \in \mathbb{R}^d$. Within a standard minimax estimation framework, we provide tight upper and lower bounds on the error in estimating $\theta^*$ under both local and central models of DP. We show, for a given privacy budget $\epsilon$ and number of samples $n$, that the additional cost to ensure label-DP under local model is $\Theta \big(\frac{1}{ e^\epsilon-1}\sqrt{\frac{d}{n}}\big)$, while it is $\Theta\big(\frac{\text{poly}(d)}{\epsilon n} \big)$ under the weaker central model. We perform simulations on synthetic data that corroborate these theoretical results.
- Published
- 2023
207. Exploring Non-Linear Programming Formulations in QuantumCircuitOpt for Optimal Circuit Design
- Author
-
Henderson, Elena R., Nagarajan, Harsha, and Coffrin, Carleton
- Subjects
Quantum Physics ,Electrical Engineering and Systems Science - Systems and Control - Abstract
Given the limitations of current hardware, the theoretical gains promised by quantum computing remain unrealized across practical applications. But the gap between theory and hardware is closing, assisted by developments in quantum algorithmic modeling. One such recent development is QuantumCircuitOpt (QCOpt), an open-source software framework that leverages state-of-the-art optimization-based solvers to find provably optimal compact circuit decompositions, which are exact up to global phase and machine precision. The quantum circuit design problem can be modeled using non-linear, non-convex constraints. However, QCOpt reformulates these non-linear constraints using well-known linearization techniques such that the resulting design problem is solved as a Mixed-Integer Linear Programming (MILP) model. In this work, we instead explore whether the QCOpt could also be effective with a continuous Non-Linear Programming (NLP) model obtained via relaxation of the integer variables in the non-linear constraints. We are able to present not only multiple significant enhancements to QCOpt, with up to 11.3x speed-up in run times on average, but also opportunities for more generally exploring the behavior of gradient-based NLP solvers.
- Published
- 2023
- Full Text
- View/download PDF
208. Gravity-induced entanglement as a probe of spacetime curvature
- Author
-
Brahma, Suddhasattwa and Seenivasan, Abhinove Nagarajan
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Theory ,Quantum Physics - Abstract
It is now widely believed that if the gravitational field is (perturbatively) quantum, it would entangle two massive objects (in spatial superpositions) which were otherwise unentangled to begin with. Recently, actual table-top experiments have been proposed to test this idea in what would be the first detection of perturbative quantum gravity. In this essay, we devise a thought experiment to prove that such gravity-induced entanglement depends on the spacetime curvature and can, in principle, act as an alternate signature of the expanding background. This will open up new and complementary directions to search for such entanglement in curved spacetime and reveal fresh perspectives on it., Comment: Honorable Mention in the 2023 Essay Competition of the Gravity Research Foundation; comments welcome
- Published
- 2023
- Full Text
- View/download PDF
209. An Analysis of $D^\alpha$ seeding for $k$-means
- Author
-
Bamas, Etienne, Nagarajan, Sai Ganesh, and Svensson, Ola
- Subjects
Computer Science - Data Structures and Algorithms ,Computer Science - Machine Learning - Abstract
One of the most popular clustering algorithms is the celebrated $D^\alpha$ seeding algorithm (also know as $k$-means++ when $\alpha=2$) by Arthur and Vassilvitskii (2007), who showed that it guarantees in expectation an $O(2^{2\alpha}\cdot \log k)$-approximate solution to the ($k$,$\alpha$)-means cost (where euclidean distances are raised to the power $\alpha$) for any $\alpha\ge 1$. More recently, Balcan, Dick, and White (2018) observed experimentally that using $D^\alpha$ seeding with $\alpha>2$ can lead to a better solution with respect to the standard $k$-means objective (i.e. the $(k,2)$-means cost). In this paper, we provide a rigorous understanding of this phenomenon. For any $\alpha>2$, we show that $D^\alpha$ seeding guarantees in expectation an approximation factor of $$ O_\alpha \left((g_\alpha)^{2/\alpha}\cdot \left(\frac{\sigma_{\mathrm{max}}}{\sigma_{\mathrm{min}}}\right)^{2-4/\alpha}\cdot (\min\{\ell,\log k\})^{2/\alpha}\right)$$ with respect to the standard $k$-means cost of any underlying clustering; where $g_\alpha$ is a parameter capturing the concentration of the points in each cluster, $\sigma_{\mathrm{max}}$ and $\sigma_{\mathrm{min}}$ are the maximum and minimum standard deviation of the clusters around their means, and $\ell$ is the number of distinct mixing weights in the underlying clustering (after rounding them to the nearest power of $2$). We complement these results by some lower bounds showing that the dependency on $g_\alpha$ and $\sigma_{\mathrm{max}}/\sigma_{\mathrm{min}}$ is tight. Finally, we provide an experimental confirmation of the effects of the aforementioned parameters when using $D^\alpha$ seeding. Further, we corroborate the observation that $\alpha>2$ can indeed improve the $k$-means cost compared to $D^2$ seeding, and that this advantage remains even if we run Lloyd's algorithm after the seeding., Comment: Abstract shortened to meet ArXiv requirements
- Published
- 2023
210. What do larger image classifiers memorise?
- Author
-
Lukasik, Michal, Nagarajan, Vaishnavh, Rawat, Ankit Singh, Menon, Aditya Krishna, and Kumar, Sanjiv
- Subjects
Computer Science - Machine Learning ,Computer Science - Computer Vision and Pattern Recognition ,Machine Learning (cs.LG), Artificial Intelligence (cs.AI) Machine Learning (stat.ML) - Abstract
The success of modern neural networks has prompted study of the connection between memorisation and generalisation: overparameterised models generalise well, despite being able to perfectly fit (memorise) completely random labels. To carefully study this issue, Feldman proposed a metric to quantify the degree of memorisation of individual training examples, and empirically computed the corresponding memorisation profile of a ResNet on image classification bench-marks. While an exciting first glimpse into what real-world models memorise, this leaves open a fundamental question: do larger neural models memorise more? We present a comprehensive empirical analysis of this question on image classification benchmarks. We find that training examples exhibit an unexpectedly diverse set of memorisation trajectories across model sizes: most samples experience decreased memorisation under larger models, while the rest exhibit cap-shaped or increasing memorisation. We show that various proxies for the Feldman memorization score fail to capture these fundamental trends. Lastly, we find that knowledge distillation, an effective and popular model compression technique, tends to inhibit memorisation, while also improving generalisation. Specifically, memorisation is mostly inhibited on examples with increasing memorisation trajectories, thus pointing at how distillation improves generalisation.
- Published
- 2023
211. The Cost of Down-Scaling Language Models: Fact Recall Deteriorates before In-Context Learning
- Author
-
Jin, Tian, Clement, Nolan, Dong, Xin, Nagarajan, Vaishnavh, Carbin, Michael, Ragan-Kelley, Jonathan, and Dziugaite, Gintare Karolina
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
How does scaling the number of parameters in large language models (LLMs) affect their core capabilities? We study two natural scaling techniques -- weight pruning and simply training a smaller or larger model, which we refer to as dense scaling -- and their effects on two core capabilities of LLMs: (a) recalling facts presented during pre-training and (b) processing information presented in-context during inference. By curating a suite of tasks that help disentangle these two capabilities, we find a striking difference in how these two abilities evolve due to scaling. Reducing the model size by more than 30\% (via either scaling approach) significantly decreases the ability to recall facts seen in pre-training. Yet, a 60--70\% reduction largely preserves the various ways the model can process in-context information, ranging from retrieving answers from a long context to learning parameterized functions from in-context exemplars. The fact that both dense scaling and weight pruning exhibit this behavior suggests that scaling model size has an inherently disparate effect on fact recall and in-context learning.
- Published
- 2023
212. Think before you speak: Training Language Models With Pause Tokens
- Author
-
Goyal, Sachin, Ji, Ziwei, Rawat, Ankit Singh, Menon, Aditya Krishna, Kumar, Sanjiv, and Nagarajan, Vaishnavh
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Language models generate responses by producing a series of tokens in immediate succession: the $(K+1)^{th}$ token is an outcome of manipulating $K$ hidden vectors per layer, one vector per preceding token. What if instead we were to let the model manipulate say, $K+10$ hidden vectors, before it outputs the $(K+1)^{th}$ token? We operationalize this idea by performing training and inference on language models with a (learnable) $\textit{pause}$ token, a sequence of which is appended to the input prefix. We then delay extracting the model's outputs until the last pause token is seen, thereby allowing the model to process extra computation before committing to an answer. We empirically evaluate $\textit{pause-training}$ on decoder-only models of 1B and 130M parameters with causal pretraining on C4, and on downstream tasks covering reasoning, question-answering, general understanding and fact recall. Our main finding is that inference-time delays show gains when the model is both pre-trained and finetuned with delays. For the 1B model, we witness gains on 8 of 9 tasks, most prominently, a gain of $18\%$ EM score on the QA task of SQuAD, $8\%$ on CommonSenseQA and $1\%$ accuracy on the reasoning task of GSM8k. Our work raises a range of conceptual and practical future research questions on making delayed next-token prediction a widely applicable new paradigm., Comment: Published at ICLR 2024
- Published
- 2023
213. Multi-market Optimal Energy Storage Arbitrage with Capacity Blocking for Emergency Services
- Author
-
Hashmi, Md Umar, Hardy, Stephen, Van Hertem, Dirk, and Nagarajan, Harsha
- Subjects
Mathematics - Optimization and Control ,Electrical Engineering and Systems Science - Systems and Control - Abstract
The future power system is increasingly interconnected via both AC and DC interconnectors. These interconnectors establish links between previously decoupled energy markets. In this paper, we propose an optimal multi-market energy storage arbitrage model that includes emergency service provisions for system operator(s). The model considers battery ramping and capacity constraints and utilizes operating envelopes calculated based on interconnector capacity, efficiency, dynamic energy injection and offshore wind generation in the day-ahead market. The arbitrage model considers two separate electricity prices for buying and selling of electricity in the two regions, connected via an interconnector. Using disjunctive linearization of nonlinear terms, we exactly reformulate the inter-regional energy arbitrage optimization as a mixed integer linear programming problem. We propose two capacity limit selection models for storage owners providing emergency services. The numerical analyses focus on two interconnections linking Belgium and the UK. The results are assessed based on revenue, operational cycles, payback period, shelf life and computation times.
- Published
- 2023
214. AnyMAL: An Efficient and Scalable Any-Modality Augmented Language Model
- Author
-
Moon, Seungwhan, Madotto, Andrea, Lin, Zhaojiang, Nagarajan, Tushar, Smith, Matt, Jain, Shashank, Yeh, Chun-Fu, Murugesan, Prakash, Heidari, Peyman, Liu, Yue, Srinet, Kavya, Damavandi, Babak, and Kumar, Anuj
- Subjects
Computer Science - Machine Learning ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
We present Any-Modality Augmented Language Model (AnyMAL), a unified model that reasons over diverse input modality signals (i.e. text, image, video, audio, IMU motion sensor), and generates textual responses. AnyMAL inherits the powerful text-based reasoning abilities of the state-of-the-art LLMs including LLaMA-2 (70B), and converts modality-specific signals to the joint textual space through a pre-trained aligner module. To further strengthen the multimodal LLM's capabilities, we fine-tune the model with a multimodal instruction set manually collected to cover diverse topics and tasks beyond simple QAs. We conduct comprehensive empirical analysis comprising both human and automatic evaluations, and demonstrate state-of-the-art performance on various multimodal tasks.
- Published
- 2023
215. Frustrated with Code Quality Issues? LLMs can Help!
- Author
-
Wadhwa, Nalin, Pradhan, Jui, Sonwane, Atharv, Sahu, Surya Prakash, Natarajan, Nagarajan, Kanade, Aditya, Parthasarathy, Suresh, and Rajamani, Sriram
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Software Engineering - Abstract
As software projects progress, quality of code assumes paramount importance as it affects reliability, maintainability and security of software. For this reason, static analysis tools are used in developer workflows to flag code quality issues. However, developers need to spend extra efforts to revise their code to improve code quality based on the tool findings. In this work, we investigate the use of (instruction-following) large language models (LLMs) to assist developers in revising code to resolve code quality issues. We present a tool, CORE (short for COde REvisions), architected using a pair of LLMs organized as a duo comprised of a proposer and a ranker. Providers of static analysis tools recommend ways to mitigate the tool warnings and developers follow them to revise their code. The \emph{proposer LLM} of CORE takes the same set of recommendations and applies them to generate candidate code revisions. The candidates which pass the static quality checks are retained. However, the LLM may introduce subtle, unintended functionality changes which may go un-detected by the static analysis. The \emph{ranker LLM} evaluates the changes made by the proposer using a rubric that closely follows the acceptance criteria that a developer would enforce. CORE uses the scores assigned by the ranker LLM to rank the candidate revisions before presenting them to the developer. CORE could revise 59.2% Python files (across 52 quality checks) so that they pass scrutiny by both a tool and a human reviewer. The ranker LLM is able to reduce false positives by 25.8% in these cases. CORE produced revisions that passed the static analysis tool in 76.8% Java files (across 10 quality checks) comparable to 78.3% of a specialized program repair tool, with significantly much less engineering efforts.
- Published
- 2023
216. Learning for Interval Prediction of Electricity Demand: A Cluster-based Bootstrapping Approach
- Author
-
Dube, Rohit, Gautam, Natarajan, Banerjee, Amarnath, and Nagarajan, Harsha
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Accurate predictions of electricity demands are necessary for managing operations in a small aggregation load setting like a Microgrid. Due to low aggregation, the electricity demands can be highly stochastic and point estimates would lead to inflated errors. Interval estimation in this scenario, would provide a range of values within which the future values might lie and helps quantify the errors around the point estimates. This paper introduces a residual bootstrap algorithm to generate interval estimates of day-ahead electricity demand. A machine learning algorithm is used to obtain the point estimates of electricity demand and respective residuals on the training set. The obtained residuals are stored in memory and the memory is further partitioned. Days with similar demand patterns are grouped in clusters using an unsupervised learning algorithm and these clusters are used to partition the memory. The point estimates for test day are used to find the closest cluster of similar days and the residuals are bootstrapped from the chosen cluster. This algorithm is evaluated on the real electricity demand data from EULR(End Use Load Research) and is compared to other bootstrapping methods for varying confidence intervals.
- Published
- 2023
217. Strain Dependent Spin Hall Magnetoresistance in the Multiferroic Antiferromagnet BiFeO$_3$
- Author
-
Sando, D., Chen, S., Paull, O., Xu, B., van Rijn, J. J. L., Xu, C., Xu, S., Appert, F., Juraszek, J., Bellaiche, L., Nagarajan, V., and Banerjee, T.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
The spin Hall magnetoresistance (SMR) of epitaxial BiFeO$_3$ thin films is investigated. SMR consistent with ferromagnetic interfacial states for BiFeO$_3$ films fabricated on (001) SrTiO$_3$ (R' BFO) and LaAlO$_3$ (T' BFO) substrates is found, albeit with different temperature dependencies. For T' BFO, the SMR is enhanced at room temperature, and decays with reduced temperatures. By contrast, R' BFO shows a monotonic decrease in SMR response with increasing temperature, mirroring the trend of a weak ferromagnet. Density functional theory shows that this difference originates from the coupling of the applied magnetic field to oxygen octahedral rotation (R') and spin (T') degrees of freedom., Comment: 14 pages incl. 3 figures
- Published
- 2023
218. Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abe, H., Acernese, F., Ackley, K., Adamcewicz, C., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Almualla, M., Altin, P. A., Álvarez-López, S., Amato, A., Amez-Droz, L., Amorosi, A., Anand, S., Ananyeva, A., Andersen, R., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Apostolatos, T., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Arun, K. G., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Aubin, F., AultONeal, K., Babak, S., Badalyan, A., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bai, Y., Baier, J. G., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Baltus, G., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barber, J., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Barthelmy, S. D., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Bazzan, M., Bécsy, B., Bedakihale, V. M., Beirnaert, F., Bejger, M., Bell, A. S., Benedetto, V., Beniwal, D., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhandari, A. V., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bianchi, A., Bilenko, I. A., Bilicki, M., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscans, S., Bischi, M., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boër, M., Bogaert, G., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonnand, R., Booker, P., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brooks, A. F., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cadonati, L., Cagnoli, G., Cahillane, C., Cain III, H. W., Bustillo, J. Calderón, Callaghan, J. D., Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannavacciuolo, M., Cannon, K. C., Cao, H., Cao, Z., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castaldi, G., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chalathadka-Subrahmanya, S., Chan, C., Chan, J. C. L., Chan, K. H. M., Chan, M., Chan, W. L., Chandra, K., Chang, I. P., Chang, R. -J., Chang, W., Chanial, P., Chao, S., Chapman-Bird, C., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chastain, L., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chatziioannou, K., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, X., Chen, Y. -R., Chen, Y., Cheng, H., Chessa, P., Chia, H. Y., Chiadini, F., Chiang, C., Chiarini, G., Chiba, A., Chiba, R., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chung, K. W., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciobanu, A. A., Ciolfi, R., Clara, F., Clark, J. A., Clarke, T. A., Clearwater, P., Clesse, S., Cleva, F., Coccia, E., Codazzo, E., Cohadon, P. -F., Colleoni, M., Collette, C. G., Collins, J., Colombo, A., Colpi, M., Compton, C. M., Conti, L., Cooper, S. J., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Cousins, B., Couvares, P., Coward, D. M., Cowart, M. J., Cowburn, B. D., Coyne, D. C., Coyne, R., Craig, K., Creighton, J. D. E., Creighton, T. D., Criswell, A. W., Crockett-Gray, J. C. G., Croquette, M., Crouch, R., Crowder, S. G., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Curyło, M., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Darsow-Fromm, C., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Dave, I., Davenport, A., Davier, M., Davis, D., Davis, M. C., Daw, E. J., Dax, M., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Favero, V., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., De Pietri, R., De Rosa, R., De Rossi, C., De Simone, R., Dhurandhar, S., Diab, R., Diamond, P. Z., Díaz, M. C., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Lieto, A., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Donahue, L., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Drori, Y., Du, H., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Engelby, E., Engl, A. J., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, C. R., Evans, M., Evans, T. M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fair, H., Fairhurst, S., Fan, P. C., Farah, A. M., Farr, B., Farr, W. M., Fauchon-Jones, E. J., Favaro, G., Favata, M., Fays, M., Feicht, J., Fejer, M. M., Fenyvesi, E., Ferguson, D. L., Ferrante, I., Ferreira, T. A., Fidecaro, F., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franke, A., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fujii, S., Fukunaga, I., Fulda, P., Fyffe, M., Gabella, W. E., Gadre, B., Gair, J. R., Gais, J., Galaudage, S., Gallardo, S., Gamba, R., Ganapathy, D., Ganguly, A., Gaonkar, S. G., Garaventa, B., Garcia-Bellido, J., García-Núñez, C., García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., George, J., Gerberding, O., Gergely, L., Ghadiri, N., Ghosh, Abhirup, Ghosh, Archisman, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Gleckl, A. E., Glotin, F., Godfrey, J., Godwin, P., Goetz, E., Goetz, R., Golomb, J., Lopez, S. Gomez, Goncharov, B., González, G., Goodwin-Jones, A. W., Gosselin, M., Gouaty, R., Gould, D. W., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Gruson, A. S., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupte, N., Gurav, R., Gurs, J., Gustafson, E. K., Gutierrez, N., Guzman, F., Haba, D., Haegel, L., Hain, G., Haino, S., Halim, O., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Harder, T., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hartwig, D., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, F. J., Healy, J., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Hendry, M., Heng, I. S., Hennes, E., Hennig, J. -S., Hennig, M., Henshaw, C., Hernandez, A., Hertog, T., Heurs, M., Hewitt, A. L., Higginbotham, S., Hild, S., Hill, P., Himemoto, Y., Hines, A. S., Hirata, N., Hirose, C., Ho, J., Hoang, S., Hochheim, S., Hofman, D., Hohmann, J. N., Holland, N. A., Holley-Bockelmann, K., Hollows, I. J., Holmes, Z. J., Holz, D. E., Hong, C., Hong, Q., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hoyland, D., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, S. -C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huang, Y., Huang, Y. T., Hübner, M. T., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Hur, R., Husa, S., Huxford, R., Huynh-Dinh, T., Hyland, J., Iakovlev, A., Iandolo, G. A., Iess, A., Inayoshi, K., Inoue, Y., Iorio, G., Iosif, P., Irwin, J., Isi, M., Ismail, M. A., Itoh, Y., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacqmin, T., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, D., Jain, T., James, A. L., James, P. A., Jamshidi, R., Jan, A. Z., Jani, K., Janiurek, L., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jarov, S., Jasal, P., Jaume, R., Javed, W., Jenner, K., Jennings, A., Jia, W., Jiang, J., Jin, H. -B., Johansmeyer, K., Johns, G. R., Johnson, N. A., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Karki, S., Karydas, T., Kas-danouche, Y. A., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, J., Kato, T., Katsanevas, S., Katsavounidis, E., Katsuren, J. K., Katzman, W., Kaur, T., Kawabe, K., Kéfélian, F., Keitel, D., Kelley-Derzon, J., Kemper, S. A., Kennington, J., Kesharwani, R., Key, J. S., Khadka, S., Khalili, F. Y., Khanam, T., Khazanov, E. A., Khursheed, M., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, P., Kim, S., Kim, W. S., Kim, Y. -M., Kimball, C., Kimura, N., Kinley-Hanlon, M., Kirchhoff, R., Kissel, J. S., Kiyota, T., Klimenko, S., Klinger, T., Knee, A. M., Knust, N., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Koliadko, N. D., Kolitsidou, P., Kolstein, M., Komori, K., Kondrashov, V., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kouvatsos, N., Kovalam, M., Koyama, N., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuroyanagi, S., Kuwahara, S., Kwak, K., Kwan, K., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Lakkis, M. H., Lalande, E., Lalleman, M., Lamberts, A., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., LeBohec, S., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Lemaître, A., Lenti, M., Leonardi, M., Leonova, E., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levesque, C., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Lin, Chien-Yu, Lin, Chun-Yu, Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Llamas, F., Lo, R. K. L., Lo, T., Locquet, J. -P., London, L., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lott, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lovelace, G., Lowry, M. J., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Lynam, J. E., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., MacInnis, M., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magazzù, C., Magee, R. M., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markakis, C., Markosyan, A. S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V. A., Martinez, V., Martini, A., Martinovic, K., Martynov, D. V., Marx, E. J., Masalehdan, H., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Mateu-Lucena, M., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McGhee, G. I., McGinn, J., Mchedlidze, M., McIsaac, C., McIver, J., McKinney, K., McLeod, A., McRae, T., McWilliams, S. T., Meacher, D., Mehmet, M., Mehta, A. K., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Mihaylov, D. P., Miller, A. L., Miller, A., Miller, B., Miller, S., Millhouse, M., Milotti, E., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. ., Mishkin, A., Mishra, A., Mishra, C., Mishra, T., Mistry, T., Mitchell, A. L., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Modafferi, L. M., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Morales, M., Moraru, D., Morawski, F., More, A., More, S., Moreno, C., Moreno, G., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Muñiz, E. A., Murakoshi, M., Murray, P. G., Muusse, S., Nadji, S. L., Nagar, A., Nagar, T., Nagarajan, N., Nakamura, K., Nakano, H., Nakano, M., Napolano, V., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neil, B. F., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Nesseris, S., Neunzert, A., Ng, K. Y., Ng, S. W. S., Nguyen, C., Nguyen, P., Quynh, L. Nguyen, Nichols, S. A., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nurbek, G., Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oelker, E., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., Oh, S. H., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Ohta, H., Oliveira, A. S., Oliveri, R., Oloworaran, V., O'Neal, B., Oohara, K., O'Reilly, B., Ormiston, R. G., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ottaway, D. J., Ouzriat, A., Overmier, H., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pai, S. A., Pal, A., Pal, S., Palashov, O., Pálfi, M., Palomba, C., Pan, K. -C., Panda, P. K., Panebianco, L., Pang, P. T. H., Pannarale, F., Pant, B. C., Panther, F. H., Panzer, C. D., Paoletti, F., Paoli, A., Paolone, A., Papalexakis, E. E., Papalini, L., Pappas, G., Parisi, A., Park, J., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patel, M., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pegoraro, M., Pele, A., Arellano, F. E. Peña, Penn, S., Perego, A., Pereira, A., Perez, C. J., Perez, J. J., Perez, L. H., Périgois, C., Perkins, C. C., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petermann, J., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M. ., Pillant, G., Pillas, M., Pilo, F., Pinard, L., Pineda-Bosque, C., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Ponrathnam, S., Poon, J., Porcelli, E., Portell, J., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Prudenzi, L., Puecher, A., Pullin, J., Punturo, M., Puosi, F., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quetschke, V., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raaijmakers, G., Radulesco, N., Raffai, P., Rail, S. X., Raja, S., Rajan, C., Ramirez, K. E., Ramos-Buades, A., Rana, D., Randel, E., Rangnekar, P. R., Rapagnani, P., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reid, S. W., Reitze, D. H., Relton, P., Renzini, A., Rettegno, P., Revenu, B., Reza, A., Rezac, M., Rezaei, A. S., Ricci, F., Ricci, M., Richards, D., Richardson, J. W., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Robertson, C., Robertson, N. A., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romanelli, M., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S., Royzman, A., Rozza, D., Ruggi, P., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Saha, S. S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sako, T., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Saravanan, T. R., Sarin, N., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, S., Sato, Y., Sauter, O., Savage, R. L., Savant, V., Sawada, T., Sawant, H. L., Sayah, S., Schaetzl, D., Scheel, M., Scherf, S. J., Scheuer, J., Schiworski, M. G., Schmidt, P., Schmidt, S., Schmitz, S. J., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schönbeck, A., Schouteden, K., Schuler, H., Schulte, B. W., Schutz, B. F., Schwartz, E., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Servignat, G., Setyawati, Y., Shaffer, T., Shahriar, M. S., Shaikh, M. A., Shams, B., Shao, L., Sharma, P., Sharma-Chaudhary, S., Shawhan, P., Shcheblanov, N. S., Sheela, A., Shen, B., Shepard, K. G., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Soldateschi, J., Somala, S. N., Somiya, K., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Soulard, R., Souradeep, T., Sowell, E., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Srivastava, A. K., Srivastava, V., Stachie, C., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Strang, L. C., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suh, H. G., Sullivan, A. G., Summerscales, T. Z., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P. J., Suzuki, Takamasa, Suzuki, Takanori, Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takatani, K., Takeda, H., Takeda, M., Talbot, C. J., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tanasijczuk, A. J., Tanioka, S., Tanner, D. B., Tao, D., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Terkowski, L., Themann, H., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, Shubhanshu, Tiwari, Srishti, Tiwari, V., Toivonen, A. M., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tonelli, M., Toriyama, A., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trani, A. A., Trapananti, A., Travasso, F., Traylor, G., Trenado, J., Trevor, M., Tringali, M. C., Tripathee, A., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tse, M., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Ubhi, A. S., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Ueno, K., Unnikrishnan, C. S., Ushiba, T., Utina, A., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., van Haevermaet, H., van Heijningen, J. V., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venneberg, J., Verdier, P., Verkindt, D., Verma, P., Verma, Y., Vermeulen, S. M., Veske, D., Vetrano, F., Veutro, A., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Walet, R. C., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Ward, R. L., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watada, K., Watarai, D., Wayt, K. E., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Weller, C. M., Weller, R. A., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., White, D. D., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Willetts, K., Williams, D., Williams, M. J., Williamson, A. R., Willis, J. L., Willke, B., Wils, M., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wong, D., Wong, H. T., Wong, I. C. F., Wright, M., Wu, C., Wu, D. S., Wu, H., Wysocki, D. M., Xiao, L., Xu, V. A., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, M., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yang, F. W., Yang, K. Z., Yang, L. -C., Yang, Y. -C., Yang, Yang, Yang, Yi, Yap, M. J., Yarbrough, Z., Yeh, S. -W., Yelikar, A. B., Yeung, S. M. C., Yeung, T. Y., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuzurihara, H., Zadrożny, A., Zannelli, A. J., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zevin, M., Zhang, J., Zhang, L., Zhang, R., Zhang, T., Zhang, Yanqi, Zhang, Ya, Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass $M>70$ $M_\odot$) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities $0 < e \leq 0.3$ at $0.33$ Gpc$^{-3}$ yr$^{-1}$ at 90\% confidence level., Comment: 24 pages, 5 figures
- Published
- 2023
219. Bayesian inference of state feedback control parameters for fo perturbation responses in cerebellar ataxia
- Author
-
Gaines, Jessica L, Kim, Kwang S, Parrell, Ben, Ramanarayanan, Vikram, Pongos, Alvincé L, Nagarajan, Srikantan S, and Houde, John F
- Subjects
Biological Psychology ,Psychology ,Clinical Research ,Neurosciences ,Basic Behavioral and Social Science ,Brain Disorders ,Behavioral and Social Science ,Rehabilitation ,Humans ,Bayes Theorem ,Cerebellar Ataxia ,Male ,Feedback ,Sensory ,Female ,Middle Aged ,Adult ,Computational Biology ,Speech ,Computer Simulation ,Mathematical Sciences ,Biological Sciences ,Information and Computing Sciences ,Bioinformatics - Abstract
Behavioral speech tasks have been widely used to understand the mechanisms of speech motor control in typical speakers as well as in various clinical populations. However, determining which neural functions differ between typical speakers and clinical populations based on behavioral data alone is difficult because multiple mechanisms may lead to the same behavioral differences. For example, individuals with cerebellar ataxia (CA) produce atypically large compensatory responses to pitch perturbations in their auditory feedback, compared to typical speakers, but this pattern could have many explanations. Here, computational modeling techniques were used to address this challenge. Bayesian inference was used to fit a state feedback control (SFC) model of voice fundamental frequency (fo) control to the behavioral pitch perturbation responses of speakers with CA and typical speakers. This fitting process resulted in estimates of posterior likelihood distributions for five model parameters (sensory feedback delays, absolute and relative levels of auditory and somatosensory feedback noise, and controller gain), which were compared between the two groups. Results suggest that the speakers with CA may proportionally weight auditory and somatosensory feedback differently from typical speakers. Specifically, the CA group showed a greater relative sensitivity to auditory feedback than the control group. There were also large group differences in the controller gain parameter, suggesting increased motor output responses to target errors in the CA group. These modeling results generate hypotheses about how CA may affect the speech motor system, which could help guide future empirical investigations in CA. This study also demonstrates the overall proof-of-principle of using this Bayesian inference approach to understand behavioral speech data in terms of interpretable parameters of speech motor control models.
- Published
- 2024
220. Pitch corrections occur in natural speech and are abnormal in patients with Alzheimer's disease
- Author
-
Subrahmanya, Anantajit, Ranasinghe, Kamalini G, Kothare, Hardik, Raharjo, Inez, Kim, Kwang S, Houde, John F, and Nagarajan, Srikantan S
- Subjects
Biological Psychology ,Cognitive and Computational Psychology ,Psychology ,Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD) ,Dementia ,Neurodegenerative ,Brain Disorders ,Acquired Cognitive Impairment ,Alzheimer's Disease ,Neurosciences ,Clinical Research ,Behavioral and Social Science ,Aging ,Neurological ,speech production ,speech perception ,speech control ,auditory feedback ,Alzheimer's disease ,Cognitive Sciences ,Experimental Psychology ,Biological psychology ,Cognitive and computational psychology - Abstract
Past studies have explored formant centering, a corrective behavior of convergence over the duration of an utterance toward the formants of a putative target vowel. In this study, we establish the existence of a similar centering phenomenon for pitch in healthy elderly controls and examine how such corrective behavior is altered in Alzheimer's Disease (AD). We found the pitch centering response in healthy elderly was similar when correcting pitch errors below and above the target (median) pitch. In contrast, patients with AD showed an asymmetry with a larger correction for the pitch errors below the target phonation than above the target phonation. These findings indicate that pitch centering is a robust compensation behavior in human speech. Our findings also explore the potential impacts on pitch centering from neurodegenerative processes impacting speech in AD.
- Published
- 2024
221. Neurophysiological trajectories in Alzheimer’s disease progression
- Author
-
Kudo, Kiwamu, Ranasinghe, Kamalini G, Morise, Hirofumi, Syed, Faatimah, Sekihara, Kensuke, Rankin, Katherine P, Miller, Bruce L, Kramer, Joel H, Rabinovici, Gil D, Vossel, Keith, Kirsch, Heidi E, and Nagarajan, Srikantan S
- Subjects
Biochemistry and Cell Biology ,Biological Sciences ,Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD) ,Acquired Cognitive Impairment ,Neurodegenerative ,Dementia ,Aging ,Brain Disorders ,Neurosciences ,Alzheimer's Disease ,2.1 Biological and endogenous factors ,Neurological ,Humans ,Alzheimer Disease ,Amyloid beta-Peptides ,tau Proteins ,Benchmarking ,Brain ,Alzheimer's disease ,magnetoencephalography ,biomarkers ,electrophysiology ,functional connectivity ,Human ,human ,neuroscience ,Biological sciences ,Biomedical and clinical sciences ,Health sciences - Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.
- Published
- 2024
222. Development of the Longitudinal Study of Health and Ageing in Kenya (LOSHAK).
- Author
-
Nagarajan, Niranjani, Burns, Shane, Rianga, Roselyter, Mwangi, Eunice, Sayed, Shaheen, Gichu, Muthoni, Langa, Kenneth, Ngugi, Anthony, Ehrlich, Joshua, and Miguel, Edward
- Subjects
Air pollution ,Dementia ,Health and Retirement Study ,Healthy aging ,Sub-Saharan Africa - Abstract
In Kenya, the number of adults aged ≥60 is expected to nearly quadruple by 2050, making it one of the most rapidly aging countries in Sub-Saharan Africa (SSA). Accordingly, we designed the Longitudinal Study of Health and Ageing in Kenya (LOSHAK) to generate novel data to address the health and economic consequences of this demographic transition. Specifically, LOSHAK will investigate the social, economic, environmental, biological, and policy processes that shape late-life health and economic well-being in Kenya. Modeled on the U.S. Health and Retirement Study (HRS), LOSHAK joins a network of harmonized studies on aging in >45 countries worldwide; however, LOSHAK will be only the 2nd such study in SSA. The current feasibility and pilot phase of LOSHAK will validate measures and data collection procedures in a purposive sample of Kenyan adults aged ≥45 years. We have linguistically and culturally translated instruments while aiming to maintain harmonization with both existing HRS network studies and the ongoing Kenya Life Panel Survey. The current phase of LOSHAK is nested within the Kaloleni/Rabai Community Health and Demographic Surveillance System on the coast of Kenya. LOSHAK will advance population aging research in low- and middle-income countries through the study of (a) biomarkers and physiological measures; (b) the impacts of air pollution and climate vulnerability; (c) Alzheimers disease and related dementias, mental health, disability, caregiving, and psychosocial wellbeing; and (d) economic security, including the impact of social welfare. LOSHAK will inform future public health and economic policy to address challenges related to rapid aging in Kenya and throughout SSA. Accordingly, this paper aims to introduce and provide a description of LOSHAK and its aims and objectives, as well as to inform the scientific community of current study activities being used to build toward the full population-representative study.
- Published
- 2024
223. A New Global Definition of Acute Respiratory Distress Syndrome.
- Author
-
Arabi, Yaseen, Arroliga, Alejandro, Bernard, Gordon, Bersten, Andrew, Brochard, Laurent, Calfee, Carolyn, Combes, Alain, Daniel, Brian, Ferguson, Niall, Gong, Michelle, Gotts, Jeffrey, Herridge, Margaret, Laffey, John, Liu, Kathleen, Machado, Flavia, Martin, Thomas, McAuley, Danny, Mercat, Alain, Moss, Marc, Mularski, Richard, Pesenti, Antonio, Qiu, Haibo, Ramakrishnan, Nagarajan, Ranieri, V, Riviello, Elisabeth, Rubin, Eileen, Slutsky, Arthur, Thompson, B, Twagirumugabe, Theogene, Ware, Lorraine, Wick, Katherine, and Matthay, Michael
- Subjects
ARDS ,acute lung injury ,pulmonary edema ,Humans ,Prospective Studies ,Reproducibility of Results ,Respiratory Distress Syndrome ,Oximetry ,Oxygen - Abstract
Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings. Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers. Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of ⩾30 L/min; 2) use PaO2:FiO2 ⩽ 300 mm Hg or oxygen saturation as measured by pulse oximetry SpO2:FiO2 ⩽ 315 (if oxygen saturation as measured by pulse oximetry is ⩽97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resource-limited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices. Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.
- Published
- 2024
224. CRISPR‐based environmental DNA detection for a rare endangered estuarine species
- Author
-
Nagarajan, Raman P, Sanders, Leigh, Kolm, Natalie, Perez, Alejandro, Senegal, Taylor, Mahardja, Brian, Baerwald, Melinda R, and Schreier, Andrea D
- Subjects
Microbiology ,Biological Sciences ,Genetics ,Life on Land ,Ecology - Abstract
Environmental DNA (eDNA) methods complement traditional aquatic monitoring surveys and are especially advantageous for rare and listed species to detect spatial and temporal distribution patterns. However, improvements in ease of use and portability could increase the utility of eDNA methods, leading to more widespread application, including expanding its role in management decision-making processes. We describe the development of an eDNA detection assay for delta smelt (Hypomesus transpacificus), an endangered fish in the San Francisco Estuary, using SHERLOCK (Specific High-Sensitivity Enzymatic Reporter Unlocking). SHERLOCK is a clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic tool with the ability to detect species-specific genetic variants, making it ideal for genetic-based taxonomic identification of any organism. Because of its high sensitivity and specificity, SHERLOCK is adaptable to eDNA detection in water samples. Here, we describe adaptation of a delta smelt SHERLOCK assay for use with estuarine water eDNA samples. This version of the assay exhibits increased sensitivity compared to the original delta smelt SHERLOCK protocol (new limit of detection approximately three copies per reaction compared to ~300 in original assay) and successfully detected delta smelt eDNA in both experimental and natural contexts. Overall, our results demonstrate that SHERLOCK eDNA detection offers managers an alternative, isothermal methodology, and highlights some challenges for detection of rare, endangered species at low abundance.
- Published
- 2024
225. Cortical Synchrony and Information Flow during Transition from Wakefulness to Light Non-Rapid Eye Movement Sleep
- Author
-
Fan, Joline M, Kudo, Kiwamu, Verma, Parul, Ranasinghe, Kamalini G, Morise, Hirofumi, Findlay, Anne M, Vossel, Keith, Kirsch, Heidi E, Raj, Ashish, Krystal, Andrew D, and Nagarajan, Srikantan S
- Subjects
Medical Physiology ,Biomedical and Clinical Sciences ,Behavioral and Social Science ,Neurosciences ,Clinical Research ,Basic Behavioral and Social Science ,Sleep Research ,1.1 Normal biological development and functioning ,Neurological ,Humans ,Female ,Wakefulness ,Electroencephalography ,Eye Movements ,Sleep Stages ,Sleep ,functional connectivity ,information flow ,MEG ,neural mass modeling ,NREM ,sleep ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Neurology & Neurosurgery - Abstract
Sleep is a highly stereotyped phenomenon, requiring robust spatiotemporal coordination of neural activity. Understanding how the brain coordinates neural activity with sleep onset can provide insights into the physiological functions subserved by sleep and the pathologic phenomena associated with sleep onset. We quantified whole-brain network changes in synchrony and information flow during the transition from wakefulness to light non-rapid eye movement (NREM) sleep, using MEG imaging in a convenient sample of 14 healthy human participants (11 female; mean 63.4 years [SD 11.8 years]). We furthermore performed computational modeling to infer excitatory and inhibitory properties of local neural activity. The transition from wakefulness to light NREM was identified to be encoded in spatially and temporally specific patterns of long-range synchrony. Within the delta band, there was a global increase in connectivity from wakefulness to light NREM, which was highest in frontoparietal regions. Within the theta band, there was an increase in connectivity in fronto-parieto-occipital regions and a decrease in temporal regions from wakefulness to Stage 1 sleep. Patterns of information flow revealed that mesial frontal regions receive hierarchically organized inputs from broad cortical regions upon sleep onset, including direct inflow from occipital regions and indirect inflow via parieto-temporal regions within the delta frequency band. Finally, biophysical neural mass modeling demonstrated changes in the anterior-to-posterior distribution of cortical excitation-to-inhibition with increased excitation-to-inhibition model parameters in anterior regions in light NREM compared with wakefulness. Together, these findings uncover whole-brain corticocortical structure and the orchestration of local and long-range, frequency-specific cortical interactions in the sleep-wake transition.SIGNIFICANCE STATEMENT Our work uncovers spatiotemporal cortical structure of neural synchrony and information flow upon the transition from wakefulness to light non-rapid eye movement sleep. Mesial frontal regions were identified to receive hierarchically organized inputs from broad cortical regions, including both direct inputs from occipital regions and indirect inputs via the parieto-temporal regions within the delta frequency range. Biophysical neural mass modeling revealed a spatially heterogeneous, anterior-posterior distribution of cortical excitation-to-inhibition. Our findings shed light on the orchestration of local and long-range cortical neural structure that is fundamental to sleep onset, and support an emerging view of cortically driven regulation of sleep homeostasis.
- Published
- 2023
226. Reduced neural connectivity in the caudate anterior head predicts hallucination severity in schizophrenia.
- Author
-
Hinkley, Leighton, Haas, Shalaila, Cheung, Steven, Nagarajan, Srikantan, and Subramaniam, Karuna
- Subjects
Caudate ,Hallucinations ,Resting-state fMRI ,Schizophrenia ,Humans ,Schizophrenia ,Tinnitus ,Hallucinations ,Brain ,Brain Mapping ,Magnetic Resonance Imaging - Abstract
BACKGROUND: Caudate functional abnormalities have been identified as one critical neural substrate underlying sensory gating impairments that lead to auditory phantom hallucinations in both patients with schizophrenia (SZ) and tinnitus, characterized by the perception of internally generated sounds in the absence of external environmental auditory stimuli. In this study, we tested the hypothesis as to whether functional connectivity abnormalities in distinct caudate subdivisions implicated in sensory gating and auditory phantom percepts in tinnitus, which are currently being localized for neuromodulation targeting using deep brain stimulation techniques, would be associated with auditory phantom hallucination severity in SZ. METHODS: Twenty five SZ and twenty eight demographically-matched healthy control (HC) participants, completed this fMRI resting-state study and clinical assessments. RESULTS: Between-group seed-to-voxel analyses revealed only one region, the caudate anterior head, which showed reduced functional connectivity with the thalamus that survived whole-brain multiple comparison corrections. Importantly, connectivity between the caudate anterior head with thalamus negatively correlated with hallucination severity. CONCLUSIONS: In the present study, we deliver the first evidence of caudate subdivision specificity for the neural pathophysiology underlying hallucinations in schizophrenia within a sensory gating framework that has been developed for auditory phantoms in patients with tinnitus. Our findings provide transdiagnostic convergent evidence for the role of the caudate in the gating of auditory phantom hallucinations, observed across patients with SZ and tinnitus by specifying the anterior caudate division is key to mediation of hallucinations, and creating a path towards personalized treatment approaches to arrest auditory phantom hallucinations from reaching perceptual awareness.
- Published
- 2023
227. Dynamic functional connectivity MEG features of Alzheimer’s disease
- Author
-
Jin, Huaqing, Ranasinghe, Kamalini G, Prabhu, Pooja, Dale, Corby, Gao, Yijing, Kudo, Kiwamu, Vossel, Keith, Raj, Ashish, Nagarajan, Srikantan S, and Jiang, Fei
- Subjects
Biomedical and Clinical Sciences ,Health Sciences ,Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD) ,Brain Disorders ,Dementia ,Alzheimer's Disease ,Acquired Cognitive Impairment ,Neurosciences ,Neurodegenerative ,Aging ,2.1 Biological and endogenous factors ,1.1 Normal biological development and functioning ,Neurological ,Humans ,Magnetoencephalography ,Alzheimer Disease ,Neurodegenerative Diseases ,Magnetic Resonance Imaging ,Brain ,Alzheimer's disease ,Brain state switch ,Dynamic resting state ,Functional connectivity ,Functional magnetic resonance ,Multi-modality imaging ,Alzheimer’s disease ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Neurology & Neurosurgery ,Biomedical and clinical sciences ,Health sciences - Abstract
Dynamic resting state functional connectivity (RSFC) characterizes time-varying fluctuations of functional brain network activity. While many studies have investigated static functional connectivity, it has been unclear whether features of dynamic functional connectivity are associated with neurodegenerative diseases. Popular sliding-window and clustering methods for extracting dynamic RSFC have various limitations that prevent extracting reliable features to address this question. Here, we use a novel and robust time-varying dynamic network (TVDN) approach to extract the dynamic RSFC features from high resolution magnetoencephalography (MEG) data of participants with Alzheimer's disease (AD) and matched controls. The TVDN algorithm automatically and adaptively learns the low-dimensional spatiotemporal manifold of dynamic RSFC and detects dynamic state transitions in data. We show that amongst all the functional features we investigated, the dynamic manifold features are the most predictive of AD. These include: the temporal complexity of the brain network, given by the number of state transitions and their dwell times, and the spatial complexity of the brain network, given by the number of eigenmodes. These dynamic features have higher sensitivity and specificity in distinguishing AD from healthy subjects than the existing benchmarks do. Intriguingly, we found that AD patients generally have higher spatial complexity but lower temporal complexity compared with healthy controls. We also show that graph theoretic metrics of dynamic component of TVDN are significantly different in AD versus controls, while static graph metrics are not statistically different. These results indicate that dynamic RSFC features are impacted in neurodegenerative disease like Alzheimer's disease, and may be crucial to understanding the pathophysiological trajectory of these diseases.
- Published
- 2023
228. Study of Abrasive Wear Behavior of Epoxy-Carbon Fiber Composites with Nano Al2O3 Filler: An Algorithmic Approach
- Author
-
Yadhav, B. R. Lokesh, Govindaraju, H. K., Kiran, M. D., Marakala, Narasimha, Mahalingam, Siva Kumar, Nagarajan, Lenin, Mohammed, Salah J., Majdi, Hasan Sh., Algburi, Sameer, and Khan, Mohammad Amir
- Published
- 2025
- Full Text
- View/download PDF
229. Characterization of Nanosilica Based Biodynamic Manure BD501
- Author
-
Bharathy, Nagarajan and Parthasarathi, Theivasigamani
- Published
- 2025
- Full Text
- View/download PDF
230. Tandemly duplicated Rubisco activase genes of cereals show differential evolution and response to heat stress
- Author
-
Nagarajan, Ragupathi, Kahlon, Kaviraj Singh, Mohan, Amita, and Gill, Kulvinder S.
- Published
- 2025
- Full Text
- View/download PDF
231. Design and Analysis of a Plasmonic Metasurface-Based Graphene Sensor for Highly Sensitive and Label-Free Detection of COVID-19 Biomarkers
- Author
-
P., Nagarajan, Wekalao, Jacob, N., Ashokkumar, and Patel, Shobhit K.
- Published
- 2024
- Full Text
- View/download PDF
232. Computational discovery of AKT serine/threonine kinase 1 inhibitors through shape screening for rheumatoid arthritis intervention
- Author
-
Rangaswamy, Raghu, Sneha, Subramaniyan, Hemavathy, Nagarajan, Umashankar, Vetrivel, and Jeyakanthan, Jeyaraman
- Published
- 2024
- Full Text
- View/download PDF
233. Characterization and utilization of Coriandrum sativum seeds and fibres for bioremediation
- Author
-
Samrot, Antony V., Xavier, Sneha, Bavanilatha, Muthiah, Rajalakshmi, Deenadhayalan, Shobana, Nagarajan, Saigeetha, Subramanian, Sathiyasree, Mahendran, Preeth, Ram Singh Sanjay, and Afzal, Sheryar
- Published
- 2024
- Full Text
- View/download PDF
234. Biosynthesis of actinobacterial mediated silver nanoparticle (AgNPs): therapeutic potential and in-silico docking analysis on targeted virulence receptor
- Author
-
Elumalai, Lokesh, Anbazhagan, Ganesh Kumar, Palaniyandi, Sankarganesh, Nagarajan, Siddharthan, Murthy, Sangeetha, Anbalmani, Sivarajan, Mohanam, Nithyalakshmi, Munusamy, Ayyasamy Pudukadu, and Ramasamy, Balagurunathan
- Published
- 2024
- Full Text
- View/download PDF
235. Cancer Detection Using Multi-layered Kretschmann Configuration–based Refractive Index Sensor
- Author
-
Nagarajan, P., Manoharadas, Salim, Dhasarathan, Vigneswaran, and Rajeshkannan, S.
- Published
- 2024
- Full Text
- View/download PDF
236. Optogenetic stimulation of mouse Hoxb8 microglia in specific regions of the brain induces anxiety, grooming, or both
- Author
-
Nagarajan, Naveen and Capecchi, Mario R.
- Published
- 2024
- Full Text
- View/download PDF
237. Prevalence and risk factor for H9N2 avian influenza virus in poultry retail shops of Madhya Pradesh
- Author
-
Dixit, Baleshwari, Murugkar, H. V., Nagarajan, S., Tosh, C., Kumar, Manoj, Pathak, Anubha, Panickan, Sivasankar, Shrivastav, Neeraj, Mishra, Anjani K., and Dixit, Manu
- Published
- 2024
- Full Text
- View/download PDF
238. First report on molecular characterization of Oestrus ovis in sheep from India
- Author
-
Nagarajan, G., Kanagarajadurai, K., Pachaiyappan, K., Pandian, S. Jegaveera, Thirumurugan, P., and Thirumaran, S. M. K.
- Published
- 2024
- Full Text
- View/download PDF
239. Clinicopathological Predictors of Positive Resection Margins in Breast-Conserving Surgery
- Author
-
Chauhan, Hemali, Jiwa, Natasha, Nagarajan, Vikneswaran Raj, Thiruchelvam, Paul, Hogben, Katy, Al-Mufti, Ragheed, Hadjiminas, Dimitri, Shousha, Sami, Cutress, Ramsey, Ashrafian, Hutan, Takats, Zoltan, and Leff, Daniel Richard
- Published
- 2024
- Full Text
- View/download PDF
240. Exploring Seaweed-Associated Marine Microbes: Growth Impacts and Enzymatic Potential for Sustainable Resource Utilization
- Author
-
Saravanan, Prakash, Chatterjee, Antara, Kiran, K. J., Bhowmick, Gourav Dhar, Sappati, Praveen Kumar, and Nagarajan, Vishwanath
- Published
- 2024
- Full Text
- View/download PDF
241. Silicone rubber-based flexible nanocomposite sheets with iron–nickel electrodeposited nanographite for microwave absorption
- Author
-
Prakash, Anjali, Sivasubramanian, R., Srivastava, Avanish K., Pandey, Mritunjay Kumar, Nagarajan, R., and Bhattacharyya, Amitava
- Published
- 2024
- Full Text
- View/download PDF
242. Clonal tracking in cancer and metastasis
- Author
-
Aalam, Syed Mohammed Musheer, Nguyen, Long Viet, Ritting, Megan L., and Kannan, Nagarajan
- Published
- 2024
- Full Text
- View/download PDF
243. A novel technology towards the high-density and continuous production of the marine copepod, Pseudodiaptomus annandalei (Sewell, 1919)
- Author
-
Santhanam, Perumal, Marjuk, Mohammed Syed, Gunabal, Shanmugam, Sridhar, Palani, Raju, Piliyan, Ananth, Selvaraj, Nandakumar, Ravichandran, Kaviyarasan, Moorthy, Devi, Ayyanar Shenbaga, Jeyanthi, Selvakumaran, Divya, Meril, Krishnaveni, Nagarajan, Gowthami, Ayyasamy, and Perumal, Pachiappan
- Published
- 2024
- Full Text
- View/download PDF
244. A novel bidirectional LSTM model for network intrusion detection in SDN-IoT network
- Author
-
Sri vidhya, G. and Nagarajan, R.
- Published
- 2024
- Full Text
- View/download PDF
245. Assessment of algal diversity and carbon sequestration potential of Arthrospira platensis and Scenedesmus vacuolatus isolated from the urban gravel pit lake in Chennai, South India—a biomass production approach from the novel areas
- Author
-
Subramanian, Keerthivarman G., Dhanushkodi, Manikandavelu, Satyapriyan, Aruna, Nagarajan, Muralidharan, Meivelu Moovendhan, Muthuvinayagam, P., Ragavan, Velmurugan, P, Pavinkumar, and Rajendiran, Dhinesh
- Published
- 2024
- Full Text
- View/download PDF
246. How calorie restriction slows aging: an epigenetic perspective
- Author
-
Lim, Gyeong Min, Maharajan, Nagarajan, and Cho, Gwang-Won
- Published
- 2024
- Full Text
- View/download PDF
247. OMIBC: optimal modified identity-based cryptography for signcryption and private key extraction using fuzzy model
- Author
-
Alagarsamy, Sumithra, Nagarajan, Vijayalakshmi, and Devi, M. M. Yamuna
- Published
- 2024
- Full Text
- View/download PDF
248. Secure monitoring model for smart agriculture using an optimized attribute-based access control centralized authority system
- Author
-
Mahalingam, Nagarajan and Sharma, Priyanka
- Published
- 2024
- Full Text
- View/download PDF
249. StaticFixer: From Static Analysis to Static Repair
- Author
-
Jain, Naman, Gandhi, Shubham, Sonwane, Atharv, Kanade, Aditya, Natarajan, Nagarajan, Parthasarathy, Suresh, Rajamani, Sriram, and Sharma, Rahul
- Subjects
Computer Science - Software Engineering - Abstract
Static analysis tools are traditionally used to detect and flag programs that violate properties. We show that static analysis tools can also be used to perturb programs that satisfy a property to construct variants that violate the property. Using this insight we can construct paired data sets of unsafe-safe program pairs, and learn strategies to automatically repair property violations. We present a system called \sysname, which automatically repairs information flow vulnerabilities using this approach. Since information flow properties are non-local (both to check and repair), \sysname also introduces a novel domain specific language (DSL) and strategy learning algorithms for synthesizing non-local repairs. We use \sysname to synthesize strategies for repairing two types of information flow vulnerabilities, unvalidated dynamic calls and cross-site scripting, and show that \sysname successfully repairs several hundred vulnerabilities from open source {\sc JavaScript} repositories, outperforming neural baselines built using {\sc CodeT5} and {\sc Codex}. Our datasets can be downloaded from \url{http://aka.ms/StaticFixer}.
- Published
- 2023
250. A Multi-Server Retrial Queueing Inventory System With Asynchronous Multiple Vacations
- Author
-
Jeganathan, K., Harikrishnan, T., Lakshmi, K. Prasanna, and Nagarajan, D.
- Subjects
Mathematics - Optimization and Control ,60K25 ,G.1.6 ,I.6.4 - Abstract
This article deals with asynchronous server vacation and customer retrial facility in a multi-server queueing-inventory system. The Poisson process governs the arrival of a customer. The system is comprised of c identical servers, a finite-size waiting area, and a storage area containing S items. The service time is distributed exponentially. If each server finds that there are an insufficient number of customers and items in the system after the busy period, they start a vacation. Once the servers vacation is over and it recognizes there is no chance of getting busy, it goes into an idle state if the number of customers or items is not sufficient, otherwise, it will take another vacation. Furthermore, each server's vacation period occurs independently of the other servers. The system accepts a (s, Q) control policy for inventory replenishment. For the steady state analysis, the Marcel F Neuts and B Madhu Rao matrix geometric approximation approach is used owing to the structure of an infinitesimal generator matrix. The necessary stability condition and R matrix are to be computed and presented. After calculating the sufficient system performance measures, an expected total cost of the system is to be constructed and numerically incorporated with the parameters. Additionally, numerical analyses will be conducted to examine the waiting time of customers in the queue and in orbit, as well as the expected rate of customer loss., Comment: 44 pages, 12 figures, 5 tables
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.