251. UncertaintyFuseNet: Robust Uncertainty-aware Hierarchical Feature Fusion Model with Ensemble Monte Carlo Dropout for COVID-19 Detection
- Author
-
Moloud Abdar, Soorena Salari, Sina Qahremani, Hak-Keung Lam, Fakhri Karray, Sadiq Hussain, Abbas Khosravi, U. Rajendra Acharya, Vladimir Makarenkov, and Saeid Nahavandi
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Hardware and Architecture ,Computer Vision and Pattern Recognition (cs.CV) ,Signal Processing ,Image and Video Processing (eess.IV) ,FOS: Electrical engineering, electronic engineering, information engineering ,Computer Science - Computer Vision and Pattern Recognition ,Electrical Engineering and Systems Science - Image and Video Processing ,Software ,Information Systems ,Machine Learning (cs.LG) - Abstract
The COVID-19 (Coronavirus disease 2019) pandemic has become a major global threat to human health and well-being. Thus, the development of computer-aided detection (CAD) systems that are capable to accurately distinguish COVID-19 from other diseases using chest computed tomography (CT) and X-ray data is of immediate priority. Such automatic systems are usually based on traditional machine learning or deep learning methods. Differently from most of existing studies, which used either CT scan or X-ray images in COVID-19-case classification, we present a simple but efficient deep learning feature fusion model, called UncertaintyFuseNet, which is able to classify accurately large datasets of both of these types of images. We argue that the uncertainty of the model's predictions should be taken into account in the learning process, even though most of existing studies have overlooked it. We quantify the prediction uncertainty in our feature fusion model using effective Ensemble MC Dropout (EMCD) technique. A comprehensive simulation study has been conducted to compare the results of our new model to the existing approaches, evaluating the performance of competing models in terms of Precision, Recall, F-Measure, Accuracy and ROC curves. The obtained results prove the efficiency of our model which provided the prediction accuracy of 99.08\% and 96.35\% for the considered CT scan and X-ray datasets, respectively. Moreover, our UncertaintyFuseNet model was generally robust to noise and performed well with previously unseen data. The source code of our implementation is freely available at: https://github.com/moloud1987/UncertaintyFuseNet-for-COVID-19-Classification., 16 pages, 18 figures
- Published
- 2021