301. The non-glycosylated protein of Toxocara canis MUC-1 interacts with proteins of murine macrophages.
- Author
-
Zhou, Rongqiong, Jia, Hongguo, Du, Zhendong, Jiang, Aiyun, Song, Zhenhui, Wang, Tao, Du, Aifang, Gasser, Robin B., and Ma, Guangxu
- Subjects
- *
CANIS , *TOXOCARA , *CARRIER proteins , *MOLECULAR interactions , *RECOMBINANT proteins , *NEMATODE infections , *COAT proteins (Viruses) - Abstract
Toxocariasis is a neglected parasitic disease caused predominantly by larvae of Toxocara canis. While this zoonotic disease is of major importance in humans and canids, it can also affect a range of other mammalian hosts. It is known that mucins secreted by larvae play key roles in immune recognition and evasion, but very little is understood about the molecular interactions between host cells and T. canis. Here, using an integrative approach (affinity pull-down, mass spectrometry, co-immunoprecipitation and bioinformatics), we identified 219 proteins expressed by a murine macrophage cell line (RAW264.7) that interact with prokaryotically-expressed recombinant protein (rTc-MUC-1) representing the mucin Tc-MUC-1 present in the surface coat of infective larvae of T. canis. Protein-protein interactions between rTc-MUC-1 and an actin binding protein CFL1 as well as the fatty acid binding protein FABP5 of RAW264.7 macrophages were also demonstrated in a human embryonic kidney cell line (HEK 293T). By combing predicted structural information on the protein-protein interaction and functional knowledge of the related protein association networks, we inferred roles for Tc-MUC-1 protein in the regulation of actin cytoskeletal remodelling, and the migration and phagosome formation of macrophage cells. These molecular interactions now require verification in vivo. The experimental approach taken here should be readily applicable to comparative studies of other ascaridoid nematodes (e.g. T. cati, Anisakis simplex, Ascaris suum and Baylisascaris procyonis) whose larvae undergo tissue migration in accidental hosts, including humans. Author summary: Toxocariasis is a neglected parasitic disease of humans caused mainly by larvae of Toxocara canis. Given that T. canis is zoonotic and can infect a range of mammals, there has been substantial interest in host-parasite relationships, with studies showing that T. canis larvae secrete abundant mucins that effect/modulate immune responses and disease pathogenesis. To improve the understanding of immunomolecular interactions, we investigated the role(s) of the protein component of a mucin (Tc-MUC-1) secreted by infective larvae using a well-defined murine macrophage line (RAW264.7). The non-glycosylated recombinant protein of Tc-MUC-1 (designated rTc-MUC-1) was shown to interact with at least 219 proteins of RAW264.7 cells, particularly with the actin binding protein (CFL1) and a fatty acid binding protein (FABP5), which are involved in cell migration and phagocytosis, respectively. Based on these findings, we propose that Tc-MUC-1 regulates cytoskeletal organisation and signal transduction in host macrophages. It would be interesting to establish, using the integrative experimental approach employed here, whether the role(s) of Tc-MUC-1 protein homologues of related ascaridoids are conserved. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF