351. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review.
- Author
-
Ahrens L and Bundschuh M
- Subjects
- Alkanesulfonic Acids toxicity, Animals, Caprylates toxicity, Ecotoxicology, Fluorocarbons toxicity, Water Pollutants, Chemical toxicity, Alkanesulfonic Acids analysis, Caprylates analysis, Fluorocarbons analysis, Water Pollutants, Chemical analysis
- Abstract
Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are distributed ubiquitously in the aquatic environment, which raises concern for the flora and fauna in hydrosystems. The present critical review focuses on the fate and adverse effects of PFASs in the aquatic environment. The PFASs are continuously emitted into the environment from point and nonpoint sources such as sewage treatment plants and atmospheric deposition, respectively. Although concentrations of single substances may be too low to cause adverse effects, their mixtures can be of significant environmental concern. The production of C8 -based PFASs (i.e., perfluorooctane sulfonate [PFOS] and perfluorooctanoate [PFOA]) is largely phased out; however, the emissions of other PFASs, in particular short-chain PFASs and PFAS precursors, are increasing. The PFAS precursors can finally degrade to persistent degradation products, which are, in particular, perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs). In the environment, PFSAs and PFCAs are subject to partitioning processes, whereby short-chain PFSAs and PFCAs are mainly distributed in the water phase, whereas long-chain PFSAs and PFCAs tend to bind to particles and have a substantial bioaccumulation potential. However, there are fundamental knowledge gaps about the interactive toxicity of PFAS precursors and their persistent degradation products but also interactions with other natural and anthropogenic stressors. Moreover, because of the continuous emission of PFASs, further information about their ecotoxicological potential among multiple generations, species interactions, and mixture toxicity seems fundamental to reliably assess the risks for PFASs to affect ecosystem structure and function in the aquatic environment., (© 2014 SETAC.)
- Published
- 2014
- Full Text
- View/download PDF