351. Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors
- Author
-
Bluebell H. Drummond, Weimin Chen, Claire Tonnelé, David Casanova, Neil C. Greenham, Richard H. Friend, David Beljonne, Yuttapoom Puttisong, Patrick J. Conaghan, Lin-Song Cui, Yoann Olivier, Gaetano Ricci, Emrys W. Evans, Frédéric Castet, Manon Catherin, Alexander J. Gillett, Giacomo Londi, Frédéric Fages, Elena Zaborova, Darcy M. L. Unson, Gillett, Alexander J [0000-0001-7572-7333], Tonnelé, Claire [0000-0003-0791-8239], Londi, Giacomo [0000-0001-7777-9161], Casanova, David [0000-0002-8893-7089], Castet, Frédéric [0000-0002-6622-2402], Chen, Weimin M [0000-0002-6405-9509], Evans, Emrys W [0000-0002-9092-3938], Drummond, Bluebell H [0000-0001-5940-8631], Greenham, Neil C [0000-0002-2155-2432], Puttisong, Yuttapoom [0000-0002-9690-6231], Fages, Frédéric [0000-0003-2013-0710], Beljonne, David [0000-0001-5082-9990], Friend, Richard H [0000-0001-6565-6308], Apollo - University of Cambridge Repository, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Apollo-University Of Cambridge Repository, Gillett, Alexander J. [0000-0001-7572-7333], Chen, Weimin M. [0000-0002-6405-9509], Evans, Emrys W. [0000-0002-9092-3938], Drummond, Bluebell H. [0000-0001-5940-8631], Greenham, Neil C. [0000-0002-2155-2432], and Friend, Richard H. [0000-0001-6565-6308]
- Subjects
120 ,Materials science ,Spin states ,Band gap ,Science ,Atom and Molecular Physics and Optics ,639/624/1020/1091 ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,Applied Physics (physics.app-ph) ,010402 general chemistry ,01 natural sciences ,Molecular physics ,General Biochemistry, Genetics and Molecular Biology ,Radiative transfer ,Organic LEDs ,639/301/1019/1020/1091 ,140/125 ,Hyperfine structure ,Condensed Matter - Materials Science ,Multidisciplinary ,132 ,article ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,Physics - Applied Physics ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,cond-mat.mtrl-sci ,0104 chemical sciences ,Organic semiconductor ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Microsecond ,Intersystem crossing ,Intramolecular force ,Atom- och molekylfysik och optik ,0210 nano-technology ,physics.app-ph - Abstract
Engineering a low singlet-triplet energy gap (ΔEST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 × 105 cm−1) and a relatively large ΔEST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 μs), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a ~24 ns timescale and have an average electron-hole separation of ≥1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low ΔEST in organic DF emitters., A low singlet-triplet energy gap, necessary for delayed fluorescence organic semiconductors, results in a small radiative rate that limits performance in OLEDs. Here, the authors show that it is possible to reconcile these conflicting requirements in materials that can access both high oscillator strength intramolecular excitations and intermolecular charge transfer states.
- Published
- 2021