Attosecond transient absorption is an ultrafast technique that has opened the possibility to study electron dynamics in condensed matter systems at its natural timescale. The extension to the x-ray regime permits one to use this powerful technique in combination with the characteristic element specificity of x-ray spectroscopy. At these timescales, the coherent effects of the electron transport are essential and have a relevant signature on the absorption spectrum. Typically, the complex light-driven dynamics requires a theoretical modeling for shedding light on the time-dependent changes in the spectrum. Here we construct a semiconductor Bloch equation model for resolving the light-induced and core-electron dynamics simultaneously, which enables to easily disentangle the interband and intraband contributions. By using the Bloch model, we demonstrate a universal feature on attosecond x-ray transient absorption spectra that emerges from the light-induced coherent intraband dynamics. This feature is linked to previous studies of light-induced Fano resonances in atomic systems, This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 702565 as well as from Comunidad de Madrid through the TALENTO program with ref. 2017-T1/IND-5432. LP acknowledges support from Junta de Castilla y León (Project SA046U16) and MINECO (FIS2016-75652-P). JB acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO), through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV- 2015-0522) Fundació Cellex Barcelona and the CERCA Programme / Generalitat de Catalunya, the European Research Council for ERC Advanced Grant TRANSFORMER (788218), MINECO for Plan Nacional FIS2017-89536-P; AGAUR for 2017 SGR 1639 and Laserlab-Europe (EU-H2020 654148)