401. Linear study of the precessional fishbone instability
- Author
-
Herbert L Berk, Matteo Faganello, Xavier Garbet, Sadruddin Benkadda, M Idouakass, Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), University of Texas at Austin [Austin], Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-10-EQPX-0029,EQUIP@MESO,Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale(2010), Idouakass, Malik, and Equipements d'excellence - Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale - - EQUIP@MESO2010 - ANR-10-EQPX-0029 - EQPX - VALID
- Subjects
Larmor precession ,Physics ,education.field_of_study ,Condensed matter physics ,Population ,Vlasov equation ,Mechanics ,Kink instability ,Condensed Matter Physics ,52.35.Py, 52.35.-g, 52.25.Dg, 52.35.Qz ,01 natural sciences ,Instability ,010305 fluids & plasmas ,Two-stream instability ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,010306 general physics ,education ,Particle density ,Linear phase - Abstract
The precessional fishbone instability is an m = n = 1 internal kink mode destabilized by a population of trapped energetic particles. The linear phase of this instability is studied here, analytically and numerically, with a simplified model. This model uses the reduced magneto-hydrodynamics (MHD) equations for the bulk plasma and the Vlasov equation for a population of energetic particles with a radially decreasing density. A threshold condition for the instability is found, as well as a linear growth rate and frequency. It is shown that the mode frequency is given by the precession frequency of the deeply trapped energetic particles at the position of strongest radial gradient. The growth rate is shown to scale with the energetic particle density and particles energy while it is decreased by continuum damping.
- Published
- 2016