The formation of spores by bacilli is considered as a strategy of survival in adverse environmental conditions. The understanding of the sporulation process as an important phase of the life cycle of bacilli began with the development of microscopic methods. The complete cytological model of sporulation has been developed by electron, fluorescence microscopy and genetic research methods. Electron microscopy allows to establish the stage of spore formation (from I to VII). To quantify the course and determine the synchronicity of the spore formation process, light microscopy methods are more suitable. Spores are well detected in culture's native preparation by phase contrast microscopy starting from stage prespores (IV) and interference contrast microscopy starting from septation stage (II). Microscopy of fixed stained preparations provides information about the presence, size, shape and location of spores. The use of some staining methods allows to differentiate spores at the stages of dormancy and germination (Wirtz-Conklin spore stain) or to distinguish mature endospores from young ones (Peshkov's method). Methods of staining spores are based on the use of high temperatures and mordants, which provide loosening of strong shells of spores and facilitate the penetration of the dye into their thick structure. At the decolorization step, the dye is removed from the vegetative cell due to weak binding to its structures, but it cannot be removed from the spores. The counter-staining step provides staining of the vegetative cell in a color different from the color of the spores. To identify and quantify the process of germination of spores use different methods based on the detection of physical, biological and chemical characteristics of this process. The transition from the phase of light dormant spores to the phase of dark germinating spores can be observed visually using phase-contrast microscopy. A simple way to study the process of germination of spores is to measure the optical density of the spore suspension in the wavelength range from 400 to 1000 nm (usually at 600 nm). But this method has a number of disadvantages. There are methods to avoid them. One of them is the determination of the activity of marker enzymes: proteases, extracellular hydrolases or esterases, which contribute to the differentiation of cells into vegetative form. An important biochemical marker of spore germination is the release of DPA (dipicolinic acid). It can be quantified by colorimetric, chromatographic, fluorescence spectroscopic, radiometric methods or dye displacement assay using a dual colorimetric-luminescent sensor system. A simple method to detect germination at an early stage is to determine the loss of heat resistance spores. Another effective way to study germination is to use specific dyes that bind to the nucleic acids of the spore nucleus as a result of impaired permeability of the inner membrane, degradation of DNA-binding proteins and cortex of the spores. The ATP bioluminescence method, based on the use of the luciferin / luciferase reaction, is a fast and sensitive way to detect germination. The combination of several methods allows characterizing the germination process more thoroughly and from different angles. Studies that have shown a correlation between sporulation and the subsequent behavior of spores suggest the need for further study of these processes in an inseparable relationship., {"references":["1.\tLogan N. A., Vos P. D. Bacillus. Bergey's Manual of Systematics of Archaea and Bacteria, Wiley, 2015, 1–163. doi:10.1002/9781118960608.gbm00530","2.\tCote C. K., Heffron J. D., Bozue J. A., Welkos S. L. Bacillus anthracis and other Bacillus species. Molecular Medical Microbiology, 2015, 1789–1844. doi:10.1016/b978-0-12-397169-2.00102-5","3.\tSetlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 2006, 101(3), 514–525. doi:10.1111/j.1365-2672.2005.02736.x","4.\tRiley E. P., Schwarz C., Derman A. I., Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. Microbial Cell, 2021, 8(1), 1–16. doi:10.15698/mic2021.01.739","5.\tRyter A. Etude morphologique de la sporulation de Bacillus subtilis [Morphologic study of the sporulation of Bacillus subtilis]. Annales de l'Institut Pasteur, 1965, 108, 40–60. PMID: 14289982","6.\tRyter A., Schaeffer P., Ionesco H. Classification cytologique, par leur stade de blocage, des mutants de sporulation de Bacillus subtilis Marburg. Annales de l'Institut Pasteur, 1966, 110(3), 305–315.","7.\tPiggot P. J., Coote J. G. Genetic aspects of bacterial endospore formation. Bacteriol Rev, 1976, 40(4), 908–962. doi:10.1128/mmbr.40.4.908-962.","8.\tTehri N., Kumar N., Raghu H., Vashishth A. Biomarkers of bacterial spore germination. Annals of Microbiology, 2018, 68(9), 513–523. doi:10.1007/s13213-018-1361-z","9.\tHitchins A. D., Kahn A. J., Slepecky R. A. Interference contrast and phase contrast microscopy of sporulation and germination of Bacillus megaterium. Journal of bacteriology, 1968, 96(5), 1811-1817.","10.\tHussey M. A., Zayaitz A. Endospore stain protocol. Laboratory Protocols. American Society for Microbiology, Washington, DC, 2007, 285. Available from: https://asm.org/ASM/media/Protocol-Images/Endospore-Stain-Protocol.pdf?ext=.pdf.","11.\tJavaeed A., Qamar S., Ali S., et al. Histological Stains in the Past, Present, and Future. Cureus, 2021, 13(10), e18486. doi:10.7759/cureus.18486.","12.\tSenthilkumar M., Amaresan N., Sankaranarayanan A. Spore Staining and Biochemical Characterization of Bacillus. In Plant-Microbe Interactions (pp. 225-229). Springer Protocols Handbooks. Humana, New York, NY, 2021. doi:10.1007/978-1-0716-1080-0_65","13.\tSchaeffer А. B., Fulton D. A simplified method of staining endospores. Science, 77(1990), 1933, 194. doi:10.1126/science.77.1990.194","14.\tShen C., Zhang Y. Endospore stain practice. Introductory Microbiology Lab Skills and Techniques in Food Science, 2022, 27–30. doi:10.1016/b978-0-12-821678-1.00013-7","15.\tBartholomew J. W., Mittwer T. O. D. A simplified bacterial spore stain. Stain technology, 1950, 25(3), 153-156. doi:10.3109/10520295009110979","16.\tHamouda T., Shih A. Y., Baker J. R. A rapid staining technique for the detection of the initiation of germination of bacterial spores. Letters in Applied Microbiology, 2002, 34(2), 86–90. doi:10.1046/j.1472-765x.2002.01047.x","17.\tHayama M., Oana K., Kozakai T., et al. Proposal of a simplified technique for staining bacterial spores without applying heat--successful modification of Moeller's method. European journal of medical research, 2007, 12(8), 356–359.","18.\tHurst L. Bacteriology, Scientific e-Resources, 2019.","19.\tSeliber G. L. Large workshop on microbiology. M.: Higher. school 1962.","20.\tKatz A., Alimova A., Xu M., et al. Refractive index changes during germination of Bacillus subtilis spores. Vo-Dinh T., Grundfest W.S., Benaron D.A., Cohn G.E., editors. Advanced Biomedical and Clinical Diagnostic Systems III [Internet]. SPIE; 2005. doi:10.1117/12.5885","21.\tKong L., Zhang P., Wang G., et al. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nature Protocols, 2011, 6(5), 625–639. doi:10.1038/nprot.2011.307","22.\tPandey R., Ter Beek A., Vischer N. O., et al. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker. PloS One, 2013, 8(3), e58972. doi:10.1371/journal.pone.0058972","23.\tGupta S., Ustok F. I., Johnson C. L., et al. Investigating the functional hierarchy of Bacillus megaterium PV361 spore germinant receptors. Journal of bacteriology, 2013, 195(13), 3045–3053. doi:10.1128/JB.00325-13","24.\tFerencko L., Cote M. A., Rotman B. Esterase activity as a novel parameter of spore germination in Bacillus anthracis. Biochemical and biophysical research communications, 2004, 319(3), 854–858. doi:10.1016/j.bbrc.2004.05.062","25.\tThakur G., Yadav A., Tehri N., et al. Rapid & novel microscopy technique to detect germination initiation and specificity in Bacillus spores. Int J Res Pure Appl Microbiol, 2013, 3(4), 134-138.","26.\tRattray J. E., Chakraborty A., Li C., et al. Sensitive quantification of dipicolinic acid from bacterial endospores in soils and sediments. Environmental Microbiology, 2020, 23(3), 1397–1406. doi:10.1111/1462-2920.15343","27.\tSlieman T. A., Nicholson W.L. Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl Environ Microbiol, 2001, 67(3), 1274-1279. doi:10.1128/AEM.67.3.1274-1279.2001","28.\tSetlow B., Atluri S., Kitchel R., et al. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective alpha/beta-type small acid-soluble proteins. Journal of bacteriology, 2006, 188(11), 3740–3747. doi:10.1128/JB.00212-06","29.\tJanssen F. W., Lund A. J., Anderson L. E. Colorimetric Assay for Dipicolinic Acid in Bacterial Spores. Science, 1958, 127(3288), 26–27. doi:10.1126/science.127.3288.26","30.\tClear K. J., Stroud S., Smith B. D. Dual colorimetric and luminescent assay for dipicolinate, a biomarker of bacterial spores. The Analyst, 2013, 138(23), 7079–7082. doi:10.1039/c3an01658g","31.\tFichtel Jö., Köster Jü., Rullkötter Jü., Sass H. Spore dipicolinic acid contents used for estimating the number of endospores in sediments. FEMS Microbiology Ecology, 2007, 61(3), 522–532. doi:10.1111/j.1574-6941.2007.00354.x","32.\tYilmaz M. D., Oktem H. A. Eriochrome Black T–Eu3+ Complex as a Ratiometric Colorimetric and Fluorescent Probe for the Detection of Dipicolinic Acid, a Biomarker of Bacterial Spores. Analytical Chemistry, 2018, 90(6), 4221–4225. doi:10.1021/acs.analchem.8b00576","33.\tAwasti N., Anand S. A fluorescence spectroscopic method for rapid detection of bacterial endospores: Proof of concept. JDS Communications, 2022, 3(2), 97–100. doi:10.3168/jdsc.2021-0170","34.\tHou L., Song Y., Xiao Y., et al. Ratiometric fluorescence detection of dipicolinic acid based on Microporous Ln/melamine-terephthaladehyde schiff base networks complex. Talanta, 2020, 209, 120534. doi:10.1016/j.talanta.2019.120534","35.\tHuang S. S., Chen D., Pelczar P. L., et al. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers. Journal of bacteriology, 2007, 189(13), 4681–4687. doi:10.1128/JB.00282-07","36.\tLuu S., Setlow P. Analysis of the Loss in Heat and Acid Resistance during Germination of Spores of Bacillus Species. Journal of Bacteriology, 2014, 196(9), 1733–1740. doi:10.1128/jb.01555-14","37.\tBlack E. P., Koziol-Dube,K., Guan,D., et al. Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure. Applied and environmental microbiology, 2005, 71(10), 5879–5887. doi:10.1128/AEM.71.10.5879-5887.2005","38.\tKong L., Zhang P., Yu J., et al. Monitoring the kinetics of uptake of a nucleic acid dye during the germination of single spores of Bacillus species. Analytical chemistry, 2010, 82(20), 8717–8724. doi:10.1021/ac1022327","39.\tWelkos S. L., Cote C. K., Rea K. M., Gibbs P. H. A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. Journal of microbiological methods, 2004, 56(2), 253–265. doi:10.1016/j.mimet.2003.10.019","40.\tSetlow B., Loshon C. A., Genest P. C., et al. Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. Journal of applied microbiology, 2002, 92(2), 362–375. doi:10.1046/j.1365-2672.2002.01540.x","41.\tSharma D. K., Prasad D. N. Rapid identification of viable bacterial spores using a fluorescence method. Biotechnic & histochemistry, 1992, 67(1), 27-29. doi:10.3109/10520299209110001","42.\tBruno J. G., Mayo M. W. A color image analysis method for assessment of germination based on differential fluorescence staining of bacterial spores and vegetative cells using acridine orange. Biotechnic & histochemistry : official publication of the Biological Stain Commission, 1995, 70(4), 175–184. doi:10.3109/10520299509107309","43.\tSchichnes D., Nemson J. A., Ruzin S. E. Fluorescent staining method for bacterial endospores. Microscope-London then Chicago, 2006, 54(2), 91-93.","44.\tBruno J. G. An acridine orange spore germination fluorescence microscopy versus spectral paradox. Journal of fluorescence, 2015, 25(1), 211-216. doi:10.1007/s10895-014-1498-5","45.\tChollet R., Ribault S. Use of ATP Bioluminescence for Rapid Detection and Enumeration of Contaminants: The Milliflex Rapid Microbiology Detection and Enumeration System. Bioluminescence - Recent Advances in Oceanic Measurements and Laboratory Applications, InTech, 2012. doi:10.5772/37055","46.\tWang G., Zhang P., Setlow P., Li Y. Q. Kinetics of germination of wet-heat-treated individual spores of Bacillus species, monitored by Raman spectroscopy and differential interference contrast microscopy. Applied and environmental microbiology, 2011, 77(10), 3368–3379. doi:10.1128/AEM.00046-11","47.\tZhang P., Kong L., Wang G., et al. Monitoring the wet-heat inactivation dynamics of single spores of Bacillus species by using Raman tweezers, differential interference contrast microscopy, and nucleic acid dye fluorescence microscopy. Applied and environmental microbiology, 2011, 77(14), 4754–4769. doi:10.1128/AEM.00194-11","48.\tWang S., Setlow P., Li Y. Q. Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination. Journal of bacteriology, 2015, 197(6), 1095–1103. doi:10.1128/JB.02490-14","49.\tMutlu A., Trauth S., Ziesack M., et al. Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nat Commun, 2018, 9, 69. doi:10.1038/s41467-017-02477-1","50.\tMutlu A., Kaspar C., Becker N., et al. A spore quality–quantity tradeoff favors diverse sporulation strategies in Bacillus subtilis. ISME J, 2020, 14, 2703–2714. doi:10.1038/s41396-020-0721-4"]}