435 results on '"[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]"'
Search Results
2. Quotient of Bergman kernels on punctured Riemann surfaces
- Author
-
Auvray, Hugues, Ma, Xiaonan, Marinescu, George, Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Paris (UP), Mathematisches Institut, and Universität zu Köln
- Subjects
Mathematics - Differential Geometry ,Differential Geometry (math.DG) ,Mathematics - Complex Variables ,Mathematics - Symplectic Geometry ,Mathematics::Complex Variables ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,General Mathematics ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV] ,Complex Variables (math.CV) ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We introduce a new method to compare the Bergman kernels of high tensor powers of the line bundle and of the Poincaré model near the singularity and show that their quotient tends to one uniformly on a neighborhood of the singularity up to arbitrary negative powers of the tensor power.
- Published
- 2022
3. Barcode entropy of geodesic flows
- Author
-
Ginzburg, Viktor L., Gurel, Basak Z., Mazzucchelli, Marco, University of California [Santa Cruz] (UC Santa Cruz), University of California (UC), University of Central Florida [Orlando] (UCF), Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,37D40, 37B40, 58E10 ,Dynamical Systems (math.DS) ,Mathematics - Dynamical Systems ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We introduce and study the barcode entropy for geodesic flows of closed Riemannian manifolds, which measures the exponential growth rate of the number of not-too-short bars in the Morse-theoretic barcode of the energy functional. We prove that the barcode entropy bounds from below the topological entropy of the geodesic flow and, conversely, bounds from above the topological entropy of any hyperbolic compact invariant set. As a consequence, for Riemannian metrics on surfaces, the barcode entropy is equal to the topological entropy. A key to the proofs and of independent interest is a crossing energy theorem for gradient flow lines of the energy functional., Comment: 41 pages
- Published
- 2022
4. Orbit growth of contact structures after surgery
- Author
-
Anne Vaugon, Boris Hasselblatt, Patrick Foulon, Centre International de Rencontres Mathématiques (CIRM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics, Tufts University, Tufts University, Tufts University [Medford]-Tufts University [Medford], Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Boris Hasselblatt partially supported by the Committee on Faculty Research Awards of Tufts University., and ANR-16-CE40-0017,Quantact,Topologie quantique et géométrie de contact(2016)
- Subjects
Anosov flow ,medicine.medical_specialty ,Dynamical systems theory ,Contact geometry ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Ocean Engineering ,Context (language use) ,Dynamical Systems (math.DS) ,Homology (mathematics) ,Reeb flow ,01 natural sciences ,surgery ,Intersection ,0103 physical sciences ,FOS: Mathematics ,medicine ,Mathematics - Dynamical Systems ,0101 mathematics ,Mathematics::Symplectic Geometry ,3-manifold ,Mathematics ,contact structure ,010102 general mathematics ,contact homology ,Mathematics::Geometric Topology ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Surgery ,Flow (mathematics) ,Mathematics - Symplectic Geometry ,Orbit (dynamics) ,Symplectic Geometry (math.SG) ,010307 mathematical physics - Abstract
This work is at the intersection of dynamical systems and contact geometry, and it focuses on the effects of a contact surgery adapted to the study of Reeb fields and on the effects of invariance of contact homology. We show that this contact surgery produces an increased dynamical complexity for all Reeb flows compatible with the new contact structure. We study Reeb Anosov fields on closed 3manifolds that are not topologically orbit-equivalent to any algebraic flow; this includes many examples on hyperbolic 3-manifolds. Our study also includes results of exponential growth in cases where neither the flow nor the manifold obtained by surgery is hyperbolic, as well as results when the original flow is periodic. This work fully demonstrates, in this context, the relevance of contact homology to the analysis of the dynamics of Reeb fields.
- Published
- 2021
5. Morse functions and contact convex surfaces
- Author
-
Cardona, Robert, Oms, Cédric, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon), ANR-21-CE40-0002,COSY,Nouveaux défis en topologie symplectique et de contact(2021), and ANR-21-CE40-0014,CoSyDy,Dynamiques conformément symplectiques, au delà du symplectique(2021)
- Subjects
Mathematics - Symplectic Geometry ,Contact geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,convex surfaces ,37D15 ,57R17 ,Morse functions. MSC codes: 53D10 ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
Let $f$ be a Morse function on a closed surface $\Sigma$ such that zero is a regular value and such that $f$ admits neither positive minima nor negative maxima. In this expository note, we show that $\Sigma\times \mathbb{R}$ admits an $\mathbb{R}$-invariant contact form $\alpha=fdt+\beta$ whose characteristic foliation along the zero section is (negative) weakly gradient-like with respect to $f$. The proof is self-contained and gives explicit constructions of any $\mathbb{R}$-invariant contact structure in $\Sigma \times \mathbb{R}$, up to isotopy. As an application, we give an alternative geometric proof of the homotopy classification of $\mathbb{R}$-invariant contact structures in terms of their dividing set., Comment: 15 pages, 5 figures. Expository note
- Published
- 2022
6. Existence and Classifications of $b$-contact structures
- Author
-
Cardona, Robert, Oms, Cédric, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon), ANR-21-CE40-0002,COSY,Nouveaux défis en topologie symplectique et de contact(2021), and ANR-21-CE40-0014,CoSyDy,Dynamiques conformément symplectiques, au delà du symplectique(2021)
- Subjects
[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
A b-contact structure on a b-manifold (M, Z) is a singular Jacobi structure on M satisfying a transversality condition along the hypersurface Z. We show that, in three dimensions, b-contact structures with overtwisted three-dimensional leaves satisfy an existence h-principle that allows prescribing the induced singular foliation. The existence of b-contact structures with tight leaves of maximal dimension is also established. We give a method to classify b-contact structures on a given b-manifold and use it to give a classification on S 3 with either a two-sphere or an unknotted torus as the critical surface. We also discuss generalizations to higher dimensions.
- Published
- 2022
7. Semitoric families
- Author
-
Floch, Yohann Le, Palmer, Joseph, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Rutgers, The State University of New Jersey [New Brunswick] (RU), and Rutgers University System (Rutgers)
- Subjects
semitoric minimal model program ,focus-focus singularities ,integrable Hamiltonian systems ,Semitoric systems ,Mathematics - Symplectic Geometry ,Hamiltonian-Hopf bifurcation ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
Semitoric systems are a type of four-dimensional integrable system for which one of the integrals generates a global $S^1$-action; these systems were classified by Pelayo and Vu Ngoc in terms of five symplectic invariants. We introduce and study semitoric families, which are one-parameter families of integrable systems with a fixed $S^1$-action that are semitoric for all but finitely many values of the parameter, with the goal of developing a strategy to find a semitoric system associated to a given partial list of semitoric invariants. We also enumerate the possible behaviors of such families at the parameter values for which they are not semitoric, providing examples illustrating nearly all possible behaviors, which describes the possible limits of semitoric systems with a fixed $S^1$-action. Furthermore, we introduce natural notions of blowup and blowdown in this context, investigate how semitoric families behave under these operations, and use this to prove that each Hirzebruch surface admits a semitoric family with certain desirable invariants; these families are related to the semitoric minimal model program. Finally, we give several explicit semitoric families on the first and second Hirzebruch surfaces showcasing various possible behaviors of such families which include new semitoric systems., Updated to version accepted by the Memoirs of the AMS, added references and improved exposition. 96 pages and 34 figures
- Published
- 2022
8. W. P. Thurston and French mathematics
- Author
-
Athanase Papadopoulos, Francois Laudenbach, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Chebyshev Laboratory, St Petersburg State University (SPbU), Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Low-dimensional topology ,History and Overview (math.HO) ,General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,low-dimensional topology ,01 natural sciences ,01A70 ,01A60 ,01A61 ,57M50 ,57R17 ,57R30 ,Mathematics - Geometric Topology ,contact structures ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,FOS: Mathematics ,57R30 Keywords: William P Thurston: Geometric structures ,0101 mathematics ,foliations ,Mathematics ,Final version ,Mathematical society ,Mathematics - History and Overview ,010102 general mathematics ,Geometric Topology (math.GT) ,Hyperbolic structures ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Haefliger structures ,William P. Thurston: Geometric structures ,history of French mathematics Part 1 ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,AMS classification: 01A70 ,[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO] ,history of French mathematics ,Hyperbolic struc- tures ,Mathematical economics - Abstract
We give a general overview of the influence of William Thurston on the French mathematical school and we show how some of the major problems he solved are rooted in the French mathematical tradition. At the same time, we survey some of Thurston's major results and their impact. The final version of this paper will appear in the Surveys of the European Mathematical Society.
- Published
- 2019
9. Spectral networks and stability conditions for Fukaya categories with coefficients
- Author
-
Haiden, Fabian, Katzarkov, Ludmil, Simpson, Carlos, Mathematical Institute, University of Oxford, University of Oxford, Department of Mathematics, University of Miami, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Faculty of Mathematics, National Research University Higher School of Economics (HSE), Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), F.~H. was partially supported by a Titchmarsh Research Fellowship.L.~K. was partially supported by an NSF Grant, a Simons Investigator Award HMS, the National Science Fund of Bulgaria, National Scientific Program ``Excellent Research and People for the Development of European Science' (VIHREN), Project No. KP-06-DV-7, and an HSE University Basic Research Program.C.~S. was supported by the 3IA Côte d’Azur (ANR-19-P3IA-0002), DuaLL (ERC Horizon 2020 number 670624), the program ``Moduli of bundles and related structures' (ICTS/mbrs2020/02), by a grant from the Institute for Advanced Study, and by the University of Miami. L.~K. and C.~S. were supported by a Simons Investigator Award HMS., Simons Collaboration on Homological Mirror Symmetry, ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019), and European Project: 670624,H2020,ERC-2014-ADG,DuaLL(2015)
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Symplectic Geometry ,Mathematics::Category Theory ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic Geometry (math.AG) ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
Given a holomorphic family of Bridgeland stability conditions over a surface, we define a notion of spectral network which is an object in a Fukaya category of the surface with coefficients in a triangulated DG-category. These spectral networks are analogs of special Lagrangian submanifolds, combining a graph with additional algebraic data, and conjecturally correspond to semistable objects of a suitable stability condition on the Fukaya category with coefficients. They are closely related to the spectral networks of Gaiotto--Moore--Neitzke. One novelty of our approach is that we establish a general uniqueness results for spectral network representatives. We also verify the conjecture in the case when the surface is disk with six marked points on the boundary and the coefficients category is the derived category of representations of an $A_2$ quiver. This example is related, via homological mirror symmetry, to the stacky quotient of an elliptic curve by the cyclic group of order six., 85 pages, 24 figures. Comments welcome!
- Published
- 2021
10. On the Hofer-Zehnder conjecture on CPd via generating functions
- Author
-
Allais, Simon, SHELUKHIN, EGOR, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Generating functions ,Hofer-Zehnder conjecture ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,periodic points ,barcodes ,persistence modules ,Hamiltonian ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We use generating function techniques developed by Givental, Théret and ourselves to deduce a proof in CPd of the homological generalization of Franks theorem due to Shelukhin. This result proves in particular the Hofer-Zehnder conjecture in the non-degenerate case: every Hamiltonian diffeomorphism of CPd that has at least d+2 non-degenerate periodic points has infinitely many periodic points. Our proof does not appeal to Floer homology or the theory of J-holomorphic curves. An appendix written by Shelukhin contains a new proof of the Smith-type inequality for barcodes of Hamiltonian diffeomorphisms that arise from Floer theory, which lends itself to adaptation to the setting of generating functions.; Au moyen de techniques utilisant les fonctions génératrices développées par Givental, Théret et nous-même, nous donnons une preuve sur CPd de la généralisation homologique de Shelukhin du théorème de Franks. Ce résultat démontre, en particulier, la conjecture de Hofer-Zehnder dans le cas non-dégénéré : tout difféomorphisme hamiltonien de CPd ayant au moins d+2 points périodiques non-dégénérés possède une infinité de points périodiques. Notre preuve ne fait pas appel à l'homologie de Floer ou à la théorie des courbes J-holomorphes. Un appendice écrit par Shelukhin propose une nouvelle preuve de l'inégalité de type Smith pour les codes-barres de difféomorphismes hamiltoniens issus de la théorie de Floer se prêtant à l'adaptation au cadre des fonctions génératrices.
- Published
- 2021
11. Existence of Birkhoff sections for Kupka-Smale Reeb flows of closed contact 3-manifolds
- Author
-
Gonzalo Contreras, Marco Mazzucchelli, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Mathematics::Dynamical Systems ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Dynamical Systems (math.DS) ,Mathematics::Geometric Topology ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Geometry and Topology ,Mathematics::Differential Geometry ,Mathematics - Dynamical Systems ,[MATH]Mathematics [math] ,Mathematics::Symplectic Geometry ,53D10, 37D40, 53C22 ,Analysis - Abstract
A Reeb vector field satisfies the Kupka-Smale condition when all its closed orbits are non-degenerate, and the stable and unstable manifolds of its hyperbolic closed orbits intersect transversely. We show that, on a closed 3-manifold, any Reeb vector field satisfying the Kupka-Smale condition admits a Birkhoff section. In particular, this implies that the Reeb vector field of a $C^\infty$-generic contact form on a closed 3-manifold admits a Birkhoff section, and that the geodesic vector field of a $C^\infty$-generic Riemannian metric on a closed surface admits a Birkhoff section., Comment: 25 pages, 9 figures, version 2: new title; the results are now extended beyond geodesic flows, to general Reeb flows satisfying the Kupka-Smale condition
- Published
- 2021
12. Courbes symplectiques de haute auto-intersection dans les surfaces symplectiques
- Author
-
KUTLE, Fabien, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Université de Nantes, and Marco Golla, Vincent Colin
- Subjects
Symplectic $4$-manifolds ,Symplectic isotopy ,Variétés symplectiques de dimension $4$ ,Surfaces réglées ,Isotopies symplectiques ,Pseudoholomorphic curves ,Symplectic fillings ,Ruled surfaces ,Courbes pseudoholomorphes ,Remplissages symplectiques ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We first study symplectically embedded curves in symplectic surfaces with high self-intersection numbers compared to their genus. We prove in two different ways that such a curve completely determines both the diffeomorphism type of the surface in which it is embedded and the embedding itself. The first proof uses Seiberg--Witten theory whereas the second one only involves pseudoholomorphic techniques. We deduce from this result that the contact $3$--manifolds naturally associated with those curves admit a unique strong symplectic filling up to diffeomorphism.We next examine symplectic sections of geometrically ruled complex surfaces over elliptic curves. We show that such a section is symplectically isotopic to a complex section.; On étudie dans un premier temps les courbes symplectiquement plongées dans les surfaces symplectiques dont les nombres d'auto-intersection sont suffisamment grands par rapport leurs genres. On montre de deux manières différentes qu'une telle courbe détermine à la fois la classe de difféomorphisme de la surface symplectique qui la contient et la manière dont elle est plongée dans cette surface. La première démonstration fait appel à la théorie de Seiberg--Witten, alors que la seconde se restreint aux techniques pseudoholomorphes. On déduit de ce résultat l'unicité à difféomorphisme près des remplissages symplectiques forts des variétés de contact de dimension $3$ naturellement associées à ce type de courbes. Dans un second temps, on s'intéresse aux sections symplectiques des surfaces complexes géométriquement réglées au-dessus de courbes elliptiques. On montre qu'une telle section est symplectiquement isotope à une section complexe.
- Published
- 2021
13. Anti-symplectic involutions on rational symplectic 4-manifolds
- Author
-
Vsevolod Shevchishin, Viatcheslav Kharlamov, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Faculty of Mathematics, National Research University Higher School of Economics (HSE)
- Subjects
Pure mathematics ,Current (mathematics) ,010102 general mathematics ,01 natural sciences ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,0103 physical sciences ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Involution (philosophy) ,010307 mathematical physics ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,0101 mathematics ,Mathematics::Symplectic Geometry ,Topology (chemistry) ,ComputingMilieux_MISCELLANEOUS ,Exposition (narrative) ,Mathematics ,Symplectic geometry - Abstract
This is an expanded version of the talk given be the first author at the conference "Topology, Geometry, and Dynamics: Rokhlin - 100". The purpose of this talk was to explain our current results on classification of rational symplectic 4-manifolds equipped with an anti-symplectic involution. Detailed exposition will appear elsewhere., Comment: 8 pages
- Published
- 2021
14. On topological and dynamical conditions imposing infinitely many periodic orbits in Hamiltonian dynamics
- Author
-
Allais, Simon, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Marco Mazzucchelli, and École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Hofer-Zehnder conjecture ,Fonctions génératrices ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Symplectic Geometry ,Conjecture de Hofer-Zehner ,Hamiltonian dynamics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Generating functions ,Théorie de Morse ,Géométrie symplectique ,Géodésiques fermées ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Dynamique hamiltonienne ,Morse theory ,Closed geodesics - Abstract
In this thesis, we are studying topological and dynamical conditions imposing infinitely many periodic orbits for some dynamical systems. In a first part, weelaborate on theories of Givental and Théret based on generating functions in order to study the case of complex projective spaces. We find recent results back without appealing to the theory of J-holomorphic curves. Inparticular, we prove Shelukhin theorem showing a homology version of the Hofer-Zehnder conjecture. In a second part, we study the geodesic flow and show new results bringing examples of topological and dynamical conditions imposing infinitely manyclosed geodesics or geodesic chords. We give conditions under which the existence of one or two closed geodesics on a complete Riemannian plane,cylinder or Möbius band impose the existence of infinitely many closed geodesics. In particular, we show that a complete Riemannian cylinder (whose closed geodesics are isolated) has zero, one or infinitely many homologically visible closed geodesics ; it solves a conjecture of Alberto Abbondandolo. We also prove that every complete Finsler manifold with an infinite fundamental group that is not homotopy equivalent to a circle possesses infinitely many geometrically distinct geodesic chords joining any given pair of points. Results of this part are partially joint with Tobias Soethe.; Dans cette thèse, nous nous intéressons aux conditions dynamiques ou topologiques imposant l’existence d’un nombre infini de trajectoires périodiques pour certains types de systèmes hamiltoniens. Dans une première partie, nous prolongeons les théories de Givental et Théret basées sur les fonctions génératrices afin d’étudier le cas des espaces projectifs complexes ; nous retrouvons ainsi des résultats très récents sans faire appel à la théorie J-holomorphe. Nous montrons, en particulier, le théorème de Shelukhin démontrant une version homologique de la conjecture de Hofer-Zehnder. Dans une seconde partie, nous nous intéressons aux flots géodésiques et démontrons de nouveaux résultats apportant des exemples de telles conditions dynamiques ou topologiques. Nous énonçons des conditions sous lesquelles la présence d'une ou deux géodésiques fermées géométriquement distinctes sur un plan, un cylindre ou un ruban de Möbius riemannien complet impose la présence d'une infinité de géodésiques fermées géométriquement distinctes. En particulier, nous montrons qu'un cylindre riemannien complet (dont les géodésiques fermées sont isolées) admet zéro, une ou une infinité de géodésiques fermées homologiquement distinctes ; cela répond à une question d'Alberto Abbondandolo. On prouve aussi que toute variété de Finsler complète de groupe fondamental infini et non homotopiquement équivalente à un cercle possède une infinité de géodésiques géométriquement distinctes joignant n'importe quelle paire de points. Les résultats de cette seconde partie sont partiellement issus d’une collaboration avec Tobias Soethe.
- Published
- 2021
15. Shifted symplectic reduction of derived critical loci
- Author
-
Anel, Mathieu, Calaque, Damien, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and European Project: 768679,DerSympApp
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Symplectic Geometry ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic Geometry (math.AG) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We prove that the derived critical locus of a $G$-invariant function $S:X\to\mathbb{A}^1$ carries a shifted moment map, and that its derived symplectic reduction is the derived critical locus of the induced function $S_{red}:X/G\to\mathbb{A}^1$ on the orbit stack. We also provide a relative version of this result, and show that derived symplectic reduction commutes with derived lagrangian intersections., 26 Pages. Many diagrams. V2: minor corrections (typos fixed, references updated). To appear in Advances in Theoretical and Mathematical Physics (ATMP)
- Published
- 2021
16. Manifold Topology Divergence: a Framework for Comparing Data Manifolds
- Author
-
Barannikov, Serguei, Trofimov, Ilya, Sotnikov, Grigorii, Trimbach, Ekaterina, Korotin, Alexander, Filippov, Alexander, Burnaev, Evgeny, Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Skolkovo Institute of Science and Technology [Moscow] (Skoltech), Moscow Institute of Physics and Technology [Moscow] (MIPT), Huawei Noah's Ark Lab, and Huawei Technologies [Shenzhen]
- Subjects
FOS: Computer and information sciences ,generative neural networks ,Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Vision and Pattern Recognition (cs.CV) ,data manifolds ,Computer Science - Computer Vision and Pattern Recognition ,deep learning ,Metric Geometry (math.MG) ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,55N31, 68T07 ,persistent homology ,Machine Learning (cs.LG) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,topological data analysis ,Artificial Intelligence (cs.AI) ,Mathematics - Metric Geometry ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Mathematics - Algebraic Topology ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] - Abstract
International audience; We develop a framework for comparing data manifolds, aimed, in particular, towards the evaluation of deep generative models. We describe a novel tool, Cross-Barcode(P,Q), that, given a pair of distributions in a high-dimensional space, tracks multiscale topology spacial discrepancies between manifolds on which the distributions are concentrated. Based on the Cross-Barcode, we introduce the Manifold Topology Divergence score (MTop-Divergence) and apply it to assess the performance of deep generative models in various domains: images, 3D-shapes, time-series, and on different datasets: MNIST, Fashion MNIST, SVHN, CIFAR10, FFHQ, chest X-ray images, market stock data, ShapeNet. We demonstrate that the MTop-Divergence accurately detects various degrees of mode-dropping, intra-mode collapse, mode invention, and image disturbance. Our algorithm scales well (essentially linearly) with the increase of the dimension of the ambient high-dimensional space. It is one of the first TDA-based practical methodologies that can be applied universally to datasets of different sizes and dimensions, including the ones on which the most recent GANs in the visual domain are trained. The proposed method is domain agnostic and does not rely on pre-trained networks.
- Published
- 2021
17. Spectral asymptotics of semiclassical unitary operators
- Author
-
Álvaro Pelayo, Yohann Le Floch, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), University of California [San Diego] (UC San Diego), and University of California
- Subjects
Convex hull ,Pure mathematics ,Spectral theory ,Inverse ,Semiclassical physics ,symplectic actions ,01 natural sciences ,Unitary state ,Mathematics - Spectral Theory ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Spectral Theory (math.SP) ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Spectrum (functional analysis) ,Cayley transform ,spectral theory ,16. Peace & justice ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Analysis ,Analysis of PDEs (math.AP) ,semiclassical analysis ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
This paper establishes an aspect of Bohr's correspondence principle, i.e. that quantum mechanics converges in the high frequency limit to classical mechanics, for commuting semiclassical unitary operators. We prove, under minimal assumptions, that the semiclassical limit of the convex hulls of the quantum spectrum of a collection of commuting semiclassical unitary operators converges to the convex hull of the classical spectrum of the principal symbols of the operators., Comment: 32 pages. Presentation substantially revised and reorganized for clarity. Main Theorem is now in in the introduction, and non central materialshave been moved to appendix 1 and appendix 2. Small mistake in the application of Cayley transform has been fixed
- Published
- 2019
18. Shifted cotangent stacks are shifted symplectic
- Author
-
Damien Calaque, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institut Universitaire de France, and ANR-14-CE25-0008,SAT,Structures supérieures en Algèbre et Topologie(2014)
- Subjects
Pure mathematics ,Carry (arithmetic) ,Structure (category theory) ,01 natural sciences ,Mathematics - Algebraic Geometry ,symbols.namesake ,0103 physical sciences ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Trigonometric functions ,Mathematics - Algebraic Topology ,0101 mathematics ,Algebraic Geometry (math.AG) ,Mathematics::Symplectic Geometry ,Physics ,010102 general mathematics ,General Medicine ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,symbols ,Symplectic Geometry (math.SG) ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics ,Lagrangian ,Symplectic geometry - Abstract
We prove that shifted cotangent stacks carry a canonical shifted symplectic structure. We also prove that shifted conormal stacks carry a canonical Lagrangian structure. These results were believed to be true but no written proof was available in the Artin case., 16 pages. Minor corrections. To appear in Annales de la Facult\'e des Sciences de Toulouse
- Published
- 2019
19. Braids in Contact 3–manifolds
- Author
-
Vera Vértesi, Institut de Recherche Mathématique Avancée (IRMA), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,Braid ,General Earth and Planetary Sciences ,[MATH]Mathematics [math] ,ComputingMilieux_MISCELLANEOUS ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,General Environmental Science ,Mathematics - Abstract
International audience
- Published
- 2019
20. Stability property of multiplicities of group representations
- Author
-
Paul-Emile Paradan, Institut Montpelliérain Alexander Grothendieck ( IMAG ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Montpelliérain Alexander Grothendieck (IMAG), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
branching laws ,Pure mathematics ,Property (philosophy) ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,multiplicities ,010102 general mathematics ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,0102 computer and information sciences ,stability ,group representation ,01 natural sciences ,Stability (probability) ,Group representation ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT] ,Mathematics - Symplectic Geometry ,010201 computation theory & mathematics ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Geometry and Topology ,Representation Theory (math.RT) ,0101 mathematics ,Mathematics - Representation Theory ,Mathematics - Abstract
International audience; This paper is dedicated to the study of the stability of multiplicities of group representations.
- Published
- 2019
21. Conformal symplectic geometry of cotangent bundles
- Author
-
Emmy Murphy, Baptiste Chantraine, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Massachusetts Institute of Technology (MIT), and ANR-13-JS01-0008,cospin,Invariants spectraux de contact(2013)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Contact geometry ,Conformal map ,Homology (mathematics) ,Mathematics::Algebraic Topology ,01 natural sciences ,Mathematics - Geometric Topology ,symbols.namesake ,Mathematics::K-Theory and Homology ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,0103 physical sciences ,FOS: Mathematics ,53D ,0101 mathematics ,Mathematics::Symplectic Geometry ,Mathematics ,Conjecture ,010102 general mathematics ,Geometric Topology (math.GT) ,16. Peace & justice ,Mathematics::Geometric Topology ,Manifold ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symbols ,Symplectic Geometry (math.SG) ,Novikov self-consistency principle ,010307 mathematical physics ,Geometry and Topology ,Hamiltonian (quantum mechanics) ,Symplectic geometry - Abstract
We prove a version of the Arnol'd conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $\beta$ cannot be disjoined from itself by a $C^0$-small Hamiltonian isotopy. Furthermore for generic such isotopies the number of intersection points equals at least the sum of the free Betti numbers of the Morse-Novikov homology of $\beta$. We also give a short exposition of conformal symplectic geometry, aimed at readers who are familiar with (standard) symplectic or contact geometry., Comment: 15 pages. v2 fixes some attribution issues, updates bibliography and corrects some typos. v3: major strengthening of the main theorem (Theorem 1.1), plus small corrections
- Published
- 2019
22. Derived Stacks in Symplectic Geometry
- Author
-
Damien Calaque, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Mathieu Anel, Gabriel Catren, and ANR-14-CE25-0008,SAT,Structures supérieures en Algèbre et Topologie(2014)
- Subjects
Field (physics) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,010102 general mathematics ,01 natural sciences ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Moduli space ,Moduli ,Theoretical physics ,[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO] ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,Mathematics::Symplectic Geometry ,Mathematics ,Symplectic geometry - Abstract
International audience; This is a survey paper on derived symplectic geometry, that will appear as a chapter contribution to the book "New Spaces for Mathematics and Physics", edited by Mathieu Anel and Gabriel Catren. Our goal is to explain how derived stacks can be useful for ordinary symplectic geometry, with an emphasis on examples coming from classical topological field theories. More precisely, we use classical Chern-Simons theory and moduli spaces of flat $G$-bundles and $G$-local systems as leading examples in our journey. We start in the introduction by reviewing various point-of-views on classical Chern--Simons theory and moduli of flat connections. In the main body of the Chapter we try to convince the reader how derived symplectic geometry (after Pantev-To\"en-Vaqui\'e-Vezzosi) somehow reconciles all these different point-of-views.
- Published
- 2021
23. Spiraling of sub-Riemannian geodesics around the Reeb flow in the 3D contact case
- Author
-
Colin De Verdière, Yves, Hillairet, Luc, Trélat, Emmanuel, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Control And GEometry (CaGE ), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Trélat, Emmanuel, Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
- Subjects
Mathematics - Differential Geometry ,Metric Geometry (math.MG) ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Metric Geometry ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,[MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG] ,Mathematics::Differential Geometry ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,Mathematics::Symplectic Geometry ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] - Abstract
We consider a closed three-dimensional contact sub-Riemannian manifold. The objective of this note is to provide a precise description of the sub-Riemannian geodesics with large initial momenta: we prove that they "spiral around the Reeb orbits", not only in the phase space but also in the configuration space. Our analysis is based on a normal form along any Reeb orbit due to Melrose.
- Published
- 2021
24. On barcodes and approximation of distributions
- Author
-
Barannikov, Serguei, Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics::General Physics ,Physics::Instrumentation and Detectors ,High Energy Physics::Lattice ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics::Differential Geometry ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We describe a novel tool, that tracks multiscale topology spacial discrepancies between manifolds
- Published
- 2021
25. Moment polytopes in real symplectic geometry II : applications to singular value inequalities
- Author
-
Paradan, Paul-Emile, Institut Montpelliérain Alexander Grothendieck (IMAG), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Representation Theory (math.RT) ,Mathematics - Representation Theory ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
In this work, we study some convex cones associated to isotropic representations of symmetric spaces. We explain the inequalities that describe them by means of cohomological conditions. In particular, we study the singular Horn cone which is the counterpart of the classical Horn cone, where the eigenvalues of Hermitian square matrices are replaced by the singular values of rectangular matrices.
- Published
- 2021
- Full Text
- View/download PDF
26. On periodic points of Hamiltonian diffeomorphisms of CPd via generating functions
- Author
-
Allais, Simon, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Generating functions ,periodic point ,hyperbolic point ,pseudo-rotations ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Mathematics::Symplectic Geometry ,Hamiltonian ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
International audience; Inspired by the techniques of Givental and Théret, we provide a proof with generating functions of a recent result of Ginzburg-Gürel concerning the periodic points of Hamiltonian diffeomorphisms of CP d. For instance, we are able to prove that fixed points of pseudo-rotations are isolated as invariant sets or that a Hamiltonian diffeomorphism with a hyperbolic fixed point has infinitely many periodic points.; Inspirés des techniques de Givental et Théret, nous donnons une preuve de récents résultats de Ginzburg-Gürel concernant les points périodiques de difféomorphismes hamiltoniens de CPd utilisant les fonctions génératrices. Nous sommes par exemple en mesure de redémontrer que les points fixes des pseudo-rotations sont isolés comme ensemble invariant ou encore qu'un difféomorphisme hamiltonien ayant un point fixe hyperbolique a une infinité de points périodiques.
- Published
- 2021
27. An overtwisted convex hypersurface in higher dimensions
- Author
-
Niederkrüger, Klaus, Chiang, River, Niederkrüger, Klaus, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and National Cheng Kung University (NCKU)
- Subjects
[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics::Algebraic Geometry ,Mathematics - Symplectic Geometry ,Mathematics::Complex Variables ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Mathematics::Differential Geometry ,53D10 ,Mathematics::Geometric Topology ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We show that the germ of the contact structure surrounding a certain kind of convex hypersurfaces is overtwisted. We then find such hypersurfaces close to any plastikstufe with toric core so that these imply overtwistedness. All proofs in this article are explicit, and we hope that the methods used here might hint at a deeper understanding of the size of neighborhoods in contact manifolds. In the appendix we reprove in a concise way that the Legendrian unknot is loose if the ambient manifold contains a large enough neighborhood of a 2-dimensional overtwisted disk. Additionally we prove the folklore result that the singular distribution induced on a hypersurface $\Sigma$ of a contact manifold $(M, \xi)$ determines the germ of the contact structure around $\Sigma$., Comment: 13 pages, 2 figure
- Published
- 2021
28. Moment polytopes in real symplectic geometry I
- Author
-
Paradan, Paul-Emile, Institut Montpelliérain Alexander Grothendieck (IMAG), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,moment polytope ,stratification ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Mathematics::Metric Geometry ,real structure of complex manifold ,group action ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
Let Z be the real part of a K{\"a}hler Hamiltonian manifold M. The O'Shea-Sjamaar's Theorem tells us that the moment polytope Delta(Z) corresponds to the anti-invariant part of the Kirwan polytope Delta(M). The purpose of the present paper is to explain how to parameterize the equations of the facets of Delta(Z) in terms of real Ressayre's pairs of Z., Comment: arXiv admin note: text overlap with arXiv:1912.10925
- Published
- 2020
29. Sur l'intégrabilité algébrique des systèmes de Bogoyavlenskij-Itoh déformés à 5 particules
- Author
-
LEON, Carlos, Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Université de Poitiers - Faculté des Sciences Fondamentales et Appliquées, Pol Vanhaecke, and Université de Poitiers
- Subjects
abelian varieties ,systèmes intégrables ,integrable systems ,algebraic integrability ,intégrabilité algébrique ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,variétés abéliennes ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
This thesis is devoted to the study of the algebraic integrability of the deformed 5-particle Bogoyavlenskij-Itoh systems. We rely on the method described by the Kowalevski-Painlevé analysis to establish this integrability result. In addition, we show that the nullity or not of the deformation parameters strongly affects the geometry of the divisor at infinity of the generic fiber of the system in question. This allows to show seven different curve configurations, on 2-dimensional (hyperelliptic) Jacobians.; Cette thèse a pour but l'étude de l'intégrabilité algébrique des systèmes de Bogoyavlenskij-Itoh déformés à 5 particules. Nous nous appuyons sur la méthode décrite par l'analyse de Kowalevski-Painlevé pour établir ce résultat d'intégrabilité. De plus, nous montrons que la nullité ou non des paramètres de déformation a des fortes répercussions sur la géométrie du diviseur à l'infini de la fibre générique du système en question. Ceci permet d'exhiber sept configurations de courbes différentes, sur les jacobiennes (hyperelliptiques) de dimension 2.
- Published
- 2020
30. Vortex sheets in ideal 3D fluids, coadjoint orbits, and characters
- Author
-
Gay-Balmaz, François, Vizman, Cornelia, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL), Centre National de la Recherche Scientifique (CNRS), and Gay-Balmaz, François
- Subjects
[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We describe the coadjoint orbits of the group of volume preserving diffeomorphisms of $\mathbb{R}^3$ associated to the motion of closed vortex sheets in ideal 3D fluids. We show that these coadjoint orbits can be identified with nonlinear Grassmannians of compact surfaces enclosing a given volume and endowed with a closed 1-form describing the vorticity density. If the vorticity density has discrete period group and is nonvanishing, the vortex sheet is given by a surface of genus one fibered by its vortex lines over a circle. We determine the Hamilton equations for such vortex sheets relative to the Hamiltonian function suggested in Khesin (2012) and prove that there are no stationary solutions having rotational symmetries. These coadjoint orbits are shown to be prequantizable if the period group of the 1-form and the volume enclosed by the surface satisfy an Onsager-Feynman relation, as argued in Goldin et al. (1991) for the case of open vortex sheets (tubes/ribbons). We find a character for the prequantizable coadjoint orbits, as well as a polarization group on which the character extends, which is a first step beyond prequantization., Comment: 25 pages, 1 figure
- Published
- 2020
31. Twisted generating functions and the nearby Lagrangian conjecture
- Author
-
Abouzaid, Mohammed, Courte, Sylvain, Guillermou, Stéphane, Kragh, Thomas, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and Guillermou, Stephane
- Subjects
[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We prove that, for closed exact embedded Lagrangian submanifolds of cotangent bundles, the homomorphism of homotopy groups induced by the stable Lagrangian Gauss map vanishes. In particular, we prove that this map is null-homotopic for all spheres. The key tool that we introduce in order to prove this is the notion of twisted generating function and we show that every closed exact Lagrangian can be described using such an object, by extending a doubling argument developed in the setting of sheaf theory. Floer theory and sheaf theory constrain the type of twisted generating functions that can appear to a class which is closely related to Waldhausen's tube space, and our main result follows by a theorem of B\"okstedt which computes the rational homotopy type of the tube space., Comment: minor modifications
- Published
- 2020
32. Géométrie convexe II Distances et mesures, approximation, comparaison et symétrisation
- Author
-
Pinoli, Jean-Charles, Département Procédés de Mise en oeuvre des Milieux Granulaires (PMMG-ENSMSE), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Laboratoire Georges Friedel (LGF-ENSMSE), and Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
- Subjects
star-shaped sets ,intrinsic volumes ,ensembles étoilés ,convex sets ,geometric inequalities ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,inégalités géométriques ,volumes intrinsèques ,ensembles convexes ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
National audience; Convex Geometry is the branch of geometry studying convex sets, mainly in Euclidean spaces. Convex sets occur naturally in Geometry and in many mathematical areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, game theory, probability theory, stochastic geometry, stereology etc.. Convex Geometry is also of interest in other scientific and engineering disciplines (e.g. in biology, chemistry, cosmology, geology, pharmaceutics, physics …) where elementary objects (cells, corpuscles, grains, particles, planets …) are often considered as convex sets. This second article deals with distances and measurements on convex sets and more broadly on star-shaped sets, as well as approximations, comparisons and symmetrizations, whose interest lies both in theory and in practice.; La géométrie convexe est la branche de la géométrie traitant des ensembles convexes, principalement dans les espaces euclidiens. Les ensembles convexes se produisent naturellement dans la géométrie et dans beaucoup de domaines mathématiques : analyse convexe, analyse fonctionnelle, géométrie calculatoire, géométrie discrète, géométrie intégrale, géométrie des nombres, géométrie stochastique, programmation linéaire, stéréologie, théorie des jeux, théorie des probabilités,etc. La géométrie convexe concerne aussi d'autres disciplines scientifiques et techniques (e.g. biologie, chimie, cosmologie, géologie, pharmacie, physique...) où les objets élémentaires (cellules, corpuscules, grains, particules, planètes...) sont souvent considérés comme des ensembles convexes. Ce second article porte sur les distances et les mesures sur les ensembles convexes et plus largement sur les ensembles étoilés, ainsi que sur les approximations, comparaisons et symétrisations, dont l’intérêt se situe à la fois en théorie et en pratique.
- Published
- 2020
33. Géométrie convexe I - Définitions, propriétés et théorèmes fondamentaux
- Author
-
Pinoli, Jean-Charles, Département Procédés de Mise en oeuvre des Milieux Granulaires (PMMG-ENSMSE), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Laboratoire Georges Friedel (LGF-ENSMSE), and Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
- Subjects
star-shaped sets ,ensembles étoilés ,convex sets ,polyèdres ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,polyhedra ,ensembles convexes ,polygones ,simplexes ,polygons ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
National audience; Convex Geometry is the branch of geometry studying convex sets, mainly in Euclidean spaces. Convex sets occur naturally in Geometry and in many mathematical areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, game theory, probability theory, stochastic geometry, stereology etc.. Convex Geometry is also of interest in other scientific and engineering disciplines (e.g. in biology, chemistry, cosmology, geology, pharmaceutics, physics …) where elementary objects (cells, corpuscles, grains, particles, planets …) are often considered as convex sets. This first article deals with the main definitions and properties and fundamental theorems relating to convex sets and more broadly to star-shaped sets.; La géométrie convexe est la branche de la géométrie traitant des ensembles convexes, principalement dans les espaces euclidiens. Les ensembles convexes se produisent naturellement dans la géométrie et dans beaucoup de domaines mathématiques : analyse convexe, analyse fonctionnelle, géométrie calculatoire, géométrie discrète, géométrie intégrale, géométrie des nombres, géométrie stochastique, programmation linéaire, stéréologie, théorie des jeux, théorie des probabilités,etc. La géométrie convexe concerne aussi d'autres disciplines scientifiques et techniques (e.g. biologie, chimie, cosmologie, géologie, pharmacie, physique...) où les objets élémentaires (cellules, corpuscules, grains, particules, planètes...) sont souvent considérés comme des ensembles convexes. Ce premier article porte sur les principales définitions et propriétés et des théorèmes fondamentaux concernant les ensembles convexes et plus largement sur les ensembles étoilés.
- Published
- 2020
34. Homologies legendriennes suturées et applications à la construction conormale
- Author
-
Dattin, Côme, Département de Mathématiques et Informatique - Université de Nantes, Université de Nantes (UN), Université de Nantes, and Vincent Colin
- Subjects
Nœud hyperbolique ,Sutured contact manifolds ,Homologies legendriennes suturées ,Hyperbolic knot ,construction conormale ,Variétés de contact suturées ,2-tresses ,2-braids ,Sutured Legendrian homologies ,Convex hypersurfaces ,Conormal construction ,Hypersurfaces convexes ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We study Legendrians with boundary, in a contact manifold (V, ξ) with sutured convex boundary, and treat some examples. First we define the cylindrical and wrapped sutured Legendrian homologies of a Legendrian whose boundary is in the suture of ∂V . Moreover those homologies fit into an exact sequence, which conjecturally generalises the exact triangle arising from a Lagrangian filling.The unit conormal construction, applied to a submanifold embedded in a manifold with boundary, is a typical instance of this situation. The main illustration involves braids in a thickened surface : we prove that the conormals of two local pure 2-braids are isotopic (as Legendrians with fixed boundary) if and only if the braids are equivalent. In a second part, we apply the conormal construction to an hyperbolic knot in the 3-sphere, and study the sutured contact manifold obtained by taking the complement of the unit conormal of the knot. We show that the Legendrian contact homology of a fiber in the sutured contact manifold, with its product structure, is a complete invariant of the knot (up to mirror), which can be understood as a sutured version of a recent result.; Nous étudions des legendriennes à bord, incluses dans une variété de contact (V, ξ) à bord convexe suturé, et traitons quelques exemples. Tout d’abord on définit l’homologie cylindrique et enroulée d’une legendrienne dont le bord est inclus dans la suture de ∂V . De plus ces homologies s’inscrivent dans un suite exacte, qui généralise conjecturalement le triangle issu d’un remplissage lagrangien.La construction conormale, appliquée à un sous-variété plongée dans une variété à bord, est un exemple typique d’une telle situation. L’illustration principale concerne les tresses dans une surface épaissie : nous prouvons que les conormaux de deux 2-tresses pures et locales sont isotopes (comme legendriennes à bord fixe) si et seulement si les tresses sont équivalentes. Dans un second temps, nous appliquons la construction conormale à un noeud hyperbolique dans la 3-sphère, et étudions la variété de contact suturée obtenue en retirant un voisinage du conormal du nœud. Nous montrons que l’homologie legendrienne d’une fibre dans cette variété de contact suturée, avec sa structure produit, est un invariant complet du nœud, ce qui peut être vu comme une version suturée d’un récent résultat.
- Published
- 2020
35. Quantum propagation for Berezin-Toeplitz operators
- Author
-
CHARLES, Laurent, Le Floch, Yohann, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,FOS: Physical sciences ,Schrödinger equation ,Mathematical Physics (math-ph) ,Lagrangian states ,81S10 Berezin-Toeplitz operators ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Geometric quantization ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics - Symplectic Geometry ,2020 Mathematics Subject Classification. 53D50 ,semi-classical limit ,FOS: Mathematics ,81Q20 ,Symplectic Geometry (math.SG) ,Mathematics::Symplectic Geometry ,Mathematical Physics - Abstract
We describe the asymptotic behaviour of the quantum propagator generated by a Berezin-Toeplitz operator with real-valued principal symbol. We also give precise asymptotics for smoothed spectral projectors associated with the operator in the autonomous case; this leads us to introducting quantum states associated with immersed Lagrangian submanifolds. These descriptions involve geometric quantities of two origins, coming from lifts of the Hamiltonian flow to the prequantum bundle and the canonical bundle respectively. The latter are the main contribution of this article and are connected to the Maslov indices appearing in trace formulas, as will be explained in a forthcoming paper.
- Published
- 2020
36. Symplectic isotopy of rational cuspidal sextics and septics
- Author
-
Golla, Marco, K��tle, Fabien, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Mathematics - Geometric Topology ,Mathematics - Algebraic Geometry ,Mathematics - Symplectic Geometry ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,General Mathematics ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Geometric Topology (math.GT) ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic Geometry (math.AG) ,Mathematics::Geometric Topology ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We classify rational cuspidal curves of degrees 6 and 7 in the complex projective plane, up to symplectic isotopy. The proof uses topological tools, pseudoholomorphic techniques, and birational transformations., 49 pages, many figures. We have upgraded Theorem 4.7. Comments are welcome
- Published
- 2020
37. On the spectral characterization of Besse and Zoll Reeb flows
- Author
-
Marco Mazzucchelli, Viktor L. Ginzburg, Basak Z. Gurel, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Dynamical Systems (math.DS) ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Mathematics - Dynamical Systems ,[MATH]Mathematics [math] ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,High Energy Physics::Phenomenology ,Regular polygon ,Contact type ,Tangent ,Manifold ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,Equivariant map ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Mathematics::Differential Geometry ,53D10, 58E05, 53C22 ,Unit (ring theory) ,Analysis ,Symplectic geometry ,Vector space - Abstract
A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent bundles in terms of $S^1$-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic Euclidean spaces, we give a sufficient condition for the Besse property via the Ekeland-Hofer capacities., 33 pages; version 2: minor corrections
- Published
- 2020
38. NON-SIMPLICIAL QUANTUM TORIC VARIETIES
- Author
-
Boivin, Antoine, Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), and BOIVIN, Antoine
- Subjects
[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Algebraic Geometry ,Mathematics - Symplectic Geometry ,53D20 (Primary) 81S10, 53D37 (Secondary) ,FOS: Mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-CV] Mathematics [math]/Complex Variables [math.CV] ,Symplectic Geometry (math.SG) ,[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic Geometry (math.AG) ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
In this paper, we define quantum toric varieties associated to an arbitrary fan in a finitely generated subgroup of some $\mathbb{R}^d$ generalizing the article arXiv:2002.03876 of Katzarkov, Lupercio, Meersseman and Verjovsky., 35 pages, 2 figures
- Published
- 2020
39. Horn(p,q)
- Author
-
Paradan, Paul-Emile, Institut Montpelliérain Alexander Grothendieck (IMAG), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Computer Science::Logic in Computer Science ,Quantum Physics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
In this article, we obtain a recursive description of the Horn cone Horn(p,q) with respect to the integers p and q, as in the classical Horn's conjecture.
- Published
- 2020
40. Horn(p,q)
- Author
-
Paradan, Paul-Emile, Institut Montpelliérain Alexander Grothendieck (IMAG), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Computer Science::Logic in Computer Science ,Quantum Physics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
In this article, we obtain a recursive description of the Horn cone Horn(p,q) with respect to the integers p and q, as in the classical Horn's conjecture.
- Published
- 2020
41. Projection stéréographique et moments, version corrigée
- Author
-
Marle, Charles-Michel, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), and Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,[MATH]Mathematics [math] ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Published
- 2020
42. Canonical forms=Persistence diagrams
- Author
-
Barannikov, Serguei, Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
data points cloud ,Filtered complex ,Morse complex ,Persistent homology ,Persistence bar-codes ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
Any filtered complex over a field F can be brought by a linear transformation preserving the filtration to so called canonical form, a canonically defined direct sum of filtered complexes of two types: one-dimensional complexes with trivial differential d(e_{t_i})=0 and two-dimensional complexes with trivial homology d(e_{s_j})=e_{r_j}. The presentation is devoted to the proof of this theorem, that was first published in the speaker’s 1994 paper “Framed Morse complex and its invariants”, AMS, Advances in Soviet Mathematics, 21: 93–115. Starting from the early 2000s these invariants became widely popular in Applied Mathematics under the name of “persistence diagrams” and “persistence barcodes”. The mentioned classification theorem is usually referred to in Applied Mathematics as the Persistent homology Main (or Structure, or Principal) Theorem. More than 15 different software platforms, that exist actually for computation of persistence diagrams, are based on the algorithm, described in the mentioned 1994 paper, that brings filtered complexes to the canonical form.
- Published
- 2020
43. Diagrams for nonabelian Hodge spaces on the affine line
- Author
-
Daisuke Yamakawa, Philip Boalch, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Tokyo University of Science [Tokyo]
- Subjects
Pure mathematics ,General Mathematics ,FOS: Physical sciences ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,Space (mathematics) ,01 natural sciences ,High Energy Physics::Theory ,Mathematics - Algebraic Geometry ,Physics::Popular Physics ,Mathematics::Group Theory ,Mathematics::Algebraic Geometry ,0103 physical sciences ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,0101 mathematics ,Representation Theory (math.RT) ,[MATH]Mathematics [math] ,Algebraic Geometry (math.AG) ,Mathematics ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,010102 general mathematics ,Mathematics::History and Overview ,Computer Science::Computers and Society ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Classical Analysis and ODEs ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Line (geometry) ,010307 mathematical physics ,Affine transformation ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Exactly Solvable and Integrable Systems (nlin.SI) ,Mathematics - Representation Theory - Abstract
In this announcement a diagram will be defined for each nonabelian Hodge space on the affine line., 9 pages (v2: minor improvements)
- Published
- 2020
44. Polynomial invariants and moduli of generic two-dimensional commutative algebras
- Author
-
M. Rausch de Traubenberg, M. J. Slupinski, Institut de Recherche Mathématique Avancée (IRMA), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Discrete mathematics ,Pure mathematics ,Polynomial ,Algebra and Number Theory ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Modulo ,010102 general mathematics ,Field (mathematics) ,01 natural sciences ,Moduli space ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Surjective function ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,Commutative algebra ,Commutative property ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Vector space - Abstract
Let V be a two-dimensional vector space over a field F of characteristic not 2 or 3. We show there is a surjection ν from the set of ‘generic’ commutative algebra structures on V modulo the action ...
- Published
- 2020
45. Floer theory for Lagrangian cobordisms
- Author
-
Paolo Ghiggini, Roman Golovko, Baptiste Chantraine, Georgios Dimitroglou Rizell, Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), University of Cambridge [UK] (CAM), Alfred Renyi Mathematical Institute, Eötvös Loránd University (ELTE), ANR-13-JS01-0008,cospin,Invariants spectraux de contact(2013), European Project: 646649,H2020,ERC-2014-CoG,SymplecticEinstein(2015), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Pure mathematics ,Mathematics::Algebraic Topology ,01 natural sciences ,57R58, 53D42, 53D12 ,symbols.namesake ,Morse homology ,Intersection ,Mathematics::K-Theory and Homology ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,FOS: Mathematics ,0101 mathematics ,Mathematics::Symplectic Geometry ,Mathematics ,Algebra and Number Theory ,010102 general mathematics ,Cobordism ,Mathematics::Geometric Topology ,Manifold ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Floer homology ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Mathematics - Symplectic Geometry ,symbols ,Symplectic Geometry (math.SG) ,Geometry and Topology ,Analysis ,Lagrangian - Abstract
In this article we define intersection Floer homology for exact Lagrangian cobordisms between Legendrian submanifolds in the contactisation of a Liouville manifold, provided that the Chekanov-Eliashberg algebras of the negative ends of the cobordisms admit augmentations. From this theory we derive several exact sequences relating the Morse homology of an exact Lagrangian cobordism with the bilinearised contact homologies of its ends. These are then used to investigate the topological properties of exact Lagrangian cobordisms., Comment: 61 pages, 17 figures. Final version, accepted for publication in Journal of Differential Geometry, some missing citations have been added
- Published
- 2020
46. Quantum (Non-commutative) Toric Geometry: Foundations
- Author
-
Katzarkov, Ludmil, Lupercio, Ernesto, Meersseman, Laurent, Verjovsky, Alberto, Universität Wien, Depto. matematicas CINVESTAV-IPN Mexico, Depto. Matematicas (CINVESTAV-IPN), CIVESTAV-IPN-CIVESTAV-IPN, Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Instituto de Matematicas de la UNAM unidad Cuernavaca, and UNAM
- Subjects
Mathematics::Commutative Algebra ,FOS: Physical sciences ,[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV] ,Mathematical Physics (math-ph) ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Algebraic Geometry ,Mathematics::Algebraic Geometry ,Mathematics - Symplectic Geometry ,53D20 (Primary) 81S10, 53D37 (Secondary) ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic Geometry (math.AG) ,Mathematics::Symplectic Geometry ,Mathematical Physics - Abstract
In this paper, we will introduce Quantum Toric Varieties which are (non-commutative) generalizations of ordinary toric varieties where all the tori of the classical theory are replaced by quantum tori. Quantum toric geometry is the non-commutative version of the classical theory; it generalizes non-trivially most of the theorems and properties of toric geometry. By considering quantum toric varieties as (non-algebraic) stacks, we define their category and show that it is equivalent to a category of quantum fans. We develop a Quantum Geometric Invariant Theory (QGIT) type construction of Quantum Toric Varieties. Unlike classical toric varieties, quantum toric varieties admit moduli and we define their moduli spaces, prove that these spaces are orbifolds and, in favorable cases, up to homotopy, they admit a complex structure., 93 pages, 4 figures
- Published
- 2020
47. On the existence of supporting broken book decompositions for contact forms in dimension 3
- Author
-
Vincent Colin, Pierre Dehornoy, Ana Rechtman, Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), ANR-15-IDEX-02,UGA,IDEX UGA(2016), ANR-19-CE-40-007,Gromeov, ANR-16-CE40-0017,Quantact,Topologie quantique et géométrie de contact(2016), ANR-10-IDEX-0002-02/10-IDEX-0002,UNISTRA,UNISTRA(2010), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), ANR-15-IDEX-0002,UGA,IDEX UGA(2015), ANR-19-CE40-0007,Gromeov,Groupes d'homéomorphismes de variétés(2019), ANR-10-IDEX-0002,UNISTRA,Par-delà les frontières, l'Université de Strasbourg(2010), and Université Grenoble Alpes [2020-....] (UGA [2020-....])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Geometric Topology (math.GT) ,Dynamical Systems (math.DS) ,broken book decomposition ,periodic orbits ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Geometric Topology ,Reeb vector field ,Mathematics - Symplectic Geometry ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,open book decomposition ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Mathematics::Differential Geometry ,Mathematics - Dynamical Systems ,entropy ,Mathematics::Symplectic Geometry ,Birkhoff section - Abstract
We prove that in dimension 3 every nondegenerate contact form is carried by a broken book decomposition. As an application we get that if M is a closed irreducible oriented 3-manifold that is not a graph manifold, for example a hyperbolic manifold, then every nondegenerate Reeb vector field on M has positive topological entropy. Moreover, we obtain that on a closed 3-manifold, every nondegenerate Reeb vector field has either two or infinitely many periodic orbits, and two periodic orbits are possible only on the sphere or on a lens space.
- Published
- 2020
48. Symplectic hats
- Author
-
John B. Etnyre, Marco Golla, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Mathematics - Geometric Topology ,Mathematics - Symplectic Geometry ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Geometric Topology (math.GT) ,Geometry and Topology ,Mathematics::Symplectic Geometry ,Mathematics::Geometric Topology ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We study relative symplectic cobordisms between contact submanifolds, and in particular relative symplectic cobordisms to the empty set, that we call hats. While we make some observations in higher dimensions, we focus on the case of transverse knots in the standard 3-sphere, and hats in blow-ups of the (punctured) complex projective planes. We apply the construction to give constraints on the algebraic topology of fillings of double covers of the 3-sphere branched over certain transverse quasipositive knots., Comment: 46 pages, 5 figures; accepted for publication by the Journal of Topology
- Published
- 2020
49. Non-archimedean quantum K-invariants
- Author
-
Porta, Mauro, Yu, Tony Yue, Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Porta, Mauro, Université Paris-Saclay, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Yu, Tony Yue
- Subjects
[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Algebraic Geometry ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Symplectic Geometry (math.SG) ,Primary 14N35, Secondary 14A30, 14G22, 14D23 ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic Geometry (math.AG) ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
We construct quantum K-invariants in non-archimedean analytic geometry. Contrary to the classical approach in algebraic geometry via perfect obstruction theory, we build on our previous works on the foundations of derived non-archimedean geometry, the representability theorem and Gromov compactness. We obtain a list of natural geometric relations between the stacks of stable maps, directly at the derived level, with respect to elementary operations on graphs, namely, products, cutting edges, forgetting tails and contracting edges. They imply immediately the corresponding properties of quantum K-invariants. The derived approach produces highly intuitive statements and functorial proofs. The flexibility of our derived approach to quantum K-invariants allows us to impose not only simple incidence conditions for marked points, but also incidence conditions with multiplicities. This leads to a new set of enumerative invariants. For the proofs, we further develop the foundations of derived non-archimedean geometry in this paper: we study derived lci morphisms, relative analytification, and deformation to the normal bundle. Our motivations come from non-archimedean enumerative geometry and mirror symmetry., Improved exposition
- Published
- 2020
50. The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed
- Author
-
Marco Mazzucchelli, Daniel Cristofaro-Gardiner, University of California [Santa Cruz] (UCSC), University of California, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), University of California [Santa Cruz] (UC Santa Cruz), University of California (UC), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Dynamical Systems (math.DS) ,Rank (differential topology) ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Mathematics - Dynamical Systems ,[MATH]Mathematics [math] ,Classical theorem ,53C22, 58E10 ,Mathematics::Symplectic Geometry ,Mathematics ,010102 general mathematics ,Manifold ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Flow (mathematics) ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,Orbit (dynamics) ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Mathematics::Differential Geometry - Abstract
A classical theorem due to Wadsley implies that, on a connected contact manifold all of whose Reeb orbits are closed, there is a common period for the Reeb orbits. In this paper we show that, for any Reeb flow on a closed connected 3-manifold, the following conditions are actually equivalent: (1) every Reeb orbit is closed; (2) all closed Reeb orbits have a common period; (3) the action spectrum has rank 1. We also show that, on a fixed closed connected 3-manifold, a contact form with an action spectrum of rank 1 is determined (up to pull-back by diffeomorphisms) by the set of minimal periods of its closed Reeb orbits., Comment: 18 pages; version 3: we specified that the contact manifolds are required to be connected. To appear in Commentarii Mathematici Helvetici
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.