49 results on '"Álvaro Pelayo"'
Search Results
2. Symplectic invariants of semitoric systems and the inverse problem for quantum systems
- Author
-
Álvaro Pelayo
- Subjects
Pure mathematics ,Integrable system ,General Mathematics ,010102 general mathematics ,Spectrum (functional analysis) ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,010103 numerical & computational mathematics ,Inverse problem ,Convex polygon ,01 natural sciences ,Mathematics - Spectral Theory ,Mathematics - Symplectic Geometry ,Simple (abstract algebra) ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Gravitational singularity ,0101 mathematics ,Spectral Theory (math.SP) ,Quantum ,Mathematical Physics ,Symplectic geometry ,Mathematics - Abstract
Simple semitoric systems were classified about ten years ago in terms of a collection of invariants, essentially given by a convex polygon with some marked points corresponding to focus-focus singularities. Each marked point is endowed with labels which are symplectic invariants of the system. We will review the construction of these invariants, and explain how they have been generalized or applied in different contexts. One of these applications concerns quantum integrable systems and the corresponding inverse problem, which asks how much information of the associated classical system can be found in the spectrum. An approach to this problem has been to try to compute invariants in the spectrum. We will explain how this has been recently achieved for some of the invariants of semitoric systems, and discuss an open question in this direction., 24 pages, 4 figures
- Published
- 2021
3. Spectral asymptotics of semiclassical unitary operators
- Author
-
Álvaro Pelayo, Yohann Le Floch, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), University of California [San Diego] (UC San Diego), and University of California
- Subjects
Convex hull ,Pure mathematics ,Spectral theory ,Inverse ,Semiclassical physics ,symplectic actions ,01 natural sciences ,Unitary state ,Mathematics - Spectral Theory ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Spectral Theory (math.SP) ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Spectrum (functional analysis) ,Cayley transform ,spectral theory ,16. Peace & justice ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Analysis ,Analysis of PDEs (math.AP) ,semiclassical analysis ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
This paper establishes an aspect of Bohr's correspondence principle, i.e. that quantum mechanics converges in the high frequency limit to classical mechanics, for commuting semiclassical unitary operators. We prove, under minimal assumptions, that the semiclassical limit of the convex hulls of the quantum spectrum of a collection of commuting semiclassical unitary operators converges to the convex hull of the classical spectrum of the principal symbols of the operators., Comment: 32 pages. Presentation substantially revised and reorganized for clarity. Main Theorem is now in in the introduction, and non central materialshave been moved to appendix 1 and appendix 2. Small mistake in the application of Cayley transform has been fixed
- Published
- 2019
4. Moser stability for volume forms on noncompact fiber bundles
- Author
-
Xiudi Tang and Álvaro Pelayo
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,010102 general mathematics ,Stability result ,Base (topology) ,01 natural sciences ,Stability (probability) ,Differential Geometry (math.DG) ,Computational Theory and Mathematics ,Mathematics - Symplectic Geometry ,0103 physical sciences ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Fiber bundle ,010307 mathematical physics ,Geometry and Topology ,0101 mathematics ,Analysis ,Mathematics ,Volume (compression) - Abstract
We prove a stability result for volume forms on fiber bundles with compact base and noncompact fibers. This generalizes the classical results of Moser and Greene--Shiohama, and recent work by the authors., Comment: 19 pages, 2 figures. Previous version (v2) was split into two parts. The first part concerns families of volume forms. The second part concerns volume forms on fiber bundles and corresponds to current version (v3)
- Published
- 2019
5. Moser–Greene–Shiohama stability for families
- Author
-
Álvaro Pelayo and Xiudi Tang
- Subjects
Pure mathematics ,Stability (learning theory) ,Geometry and Topology ,Mathematics - Published
- 2019
6. Symplectic Stability on Manifolds with Cylindrical Ends
- Author
-
Xiudi Tang, Álvaro Pelayo, and Sean N. Curry
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,010102 general mathematics ,01 natural sciences ,Convexity ,Manifold ,Differential Geometry (math.DG) ,53D05 ,Differential geometry ,Mathematics - Symplectic Geometry ,Completeness (order theory) ,0103 physical sciences ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Differential topology ,010307 mathematical physics ,Geometry and Topology ,0101 mathematics ,Symplectomorphism ,Mathematics::Symplectic Geometry ,Mathematics ,Symplectic manifold ,Symplectic geometry - Abstract
A famous result of Jurgen Moser states that a symplectic form on a compact manifold cannot be deformed within its cohomology class to an inequivalent symplectic form. It is well known that this does not hold in general for noncompact symplectic manifolds. The notion of Eliashberg-Gromov convex ends provides a natural restricted setting for the study of analogs of Moser's symplectic stability result in the noncompact case, and this has been significantly developed in work of Cieliebak-Eliashberg. Retaining the end structure on the underlying smooth manifold, but dropping the convexity and completeness assumptions on the symplectic forms at infinity we show that symplectic stability holds under a natural growth condition on the path of symplectic forms. The result can be straightforwardly applied as we show through explicit examples., 16 pages. Revised and expanded introduction. Added Example 4.3. Results and proofs unchanged
- Published
- 2018
7. The affine invariant of proper semitoric integrable systems
- Author
-
San Vu Ngọc, Tudor S. Ratiu, and Álvaro Pelayo
- Subjects
Applied Mathematics ,010102 general mathematics ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Convex polygon ,Affine manifold ,01 natural sciences ,010101 applied mathematics ,Combinatorics ,Piecewise linear function ,Bounded function ,Proper map ,Affine transformation ,0101 mathematics ,Invariant (mathematics) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Symplectic geometry ,Mathematics - Abstract
A generalized semitoric system F:=(J,H): M --> R^2 on a symplectic 4-manifold is an integrable system whose essential properties are that F is a proper map, its set of regular values is connected, J generates an S^1-action and is not necessarily proper. These systems can exhibit focus-focus singularities, which correspond to fibers of F which are topologically multipinched tori. The image F(M) is a singular affine manifold which contains a distinguished set of isolated points in its interior: the focus-focus values {(x_i,y_i)} of F. By performing a vertical cutting procedure along the lines {x:=x_i}, we construct a homeomorphism f : F(M) --> f(F(M)), which restricts to an affine diffeomorphism away from these vertical lines, and generalizes a construction of Vu Ngoc. The set \Delta:=f(F(M)) in R^2 is a symplectic invariant of (M,\omega,F), which encodes the affine structure of F. Moreover, \Delta may be described as a countable union of planar regions of four distinct types, where each type is defined as the region bounded between the graphs of two functions with various properties (piecewise linear, continuous, convex, etc). If F is a toric system, \Delta is a convex polygon (as proven by Atiyah and Guillemin-Sternberg) and f is the identity.
- Published
- 2017
8. Poincaré-Birkhoff Theorems in random dynamics
- Author
-
Álvaro Pelayo and Fraydoun Rezakhanlou
- Subjects
Computer Science::Machine Learning ,Pure mathematics ,Generalization ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Probabilistic logic ,Type (model theory) ,Fixed point ,Computer Science::Digital Libraries ,01 natural sciences ,Statistics::Machine Learning ,Nonlinear system ,Differential geometry ,0103 physical sciences ,Computer Science::Mathematical Software ,Ergodic theory ,010307 mathematical physics ,0101 mathematics ,Mathematics ,Probability measure - Abstract
We propose a generalization of the Poincaré-Birkhoff Theorem on area-preserving twist maps to area-preserving twist maps F F that are random with respect to an ergodic probability measure. In this direction, we will prove several theorems concerning existence, density, and type of the fixed points. To this end first we introduce a randomized version of generalized generating functions, and verify the correspondence between its critical points and the fixed points of F F , a fact which we successively exploit in order to prove the theorems. The study we carry out needs to combine probabilistic techniques with methods from nonlinear PDE, and from differential geometry, notably Moser’s method and Conley-Zehnder theory. Our stochastic model in the periodic case coincides with the classical setting of the Poincaré-Birkhoff Theorem.
- Published
- 2017
9. Correction to: Inverse spectral theory for semiclassical Jaynes–Cummings systems
- Author
-
San Vũ Ngọc, Yohann Le Floch, Álvaro Pelayo, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Conjecture ,Spectral theory ,General Mathematics ,010102 general mathematics ,Inverse ,Semiclassical physics ,01 natural sciences ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Mathematical physics ,Mathematics ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We explain why Theorem B in the original article does not follow from the main result of this paper (Theorem A). While we conjecture that Theorem B should nevertheless be true, in this erratum we prove a slightly weaker version of it.
- Published
- 2019
10. Symplectic geometry and spectral properties of classical and quantum coupled angular momenta
- Author
-
Yohann Le Floch, Álvaro Pelayo, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), University of California [San Diego] (UC San Diego), and University of California
- Subjects
Integrable system ,Computation ,semitoric systems ,FOS: Physical sciences ,01 natural sciences ,010305 fluids & plasmas ,Mathematics - Spectral Theory ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,Spectral Theory (math.SP) ,Quantum ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematical physics ,Physics ,Applied Mathematics ,Spectral properties ,General Engineering ,Mathematical Physics (math-ph) ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,010101 applied mathematics ,Mathematics - Symplectic Geometry ,symplectic geometry ,Modeling and Simulation ,Integrable systems ,Symplectic Geometry (math.SG) ,Symplectic geometry ,semiclassical analysis ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We give a detailed study of the symplectic geometry of a family of integrable systems obtained by coupling two angular momenta in a non trivial way. These systems depend on a parameter t $\in$ [0, 1] and exhibit different behaviors according to its value. For a certain range of values, the system is semitoric, and we compute some of its symplectic invariants. Even though these invariants have been known for almost a decade, this is to our knowledge the first example of their computation in the case of a non-toric semitoric system on a compact manifold (the only invariant of toric systems is the image of the momentum map). In the second part of the paper we quantize this system, compute its joint spectrum, and describe how to use this joint spectrum to recover information about the symplectic invariants., Comment: Exposition revised. A problem which affected the computation of one invariant has been fixed
- Published
- 2019
11. Classifying Toric and Semitoric Fans by Lifting Equations from SL2(Z)
- Author
-
Daniel M. Kane, Joseph Palmer, and Álvaro Pelayo
- Subjects
Discrete mathematics ,Pure mathematics ,Integrable system ,Covering space ,010102 general mathematics ,Dimension (graph theory) ,Special linear group ,Singular point of a curve ,01 natural sciences ,Moduli space ,0103 physical sciences ,010307 mathematical physics ,Geometry and Topology ,Isomorphism class ,0101 mathematics ,Mathematical Physics ,Analysis ,Symplectic geometry ,Mathematics - Abstract
We present an algebraic method to study four-dimensional toric varieties by lifting matrix equations from the special linear group ${\rm SL}_2({\mathbb Z})$ to its preimage in the universal cover of ${\rm SL}_2({\mathbb R})$. With this method we recover the classification of two-dimensional toric fans, and obtain a description of their semitoric analogue. As an application to symplectic geometry of Hamiltonian systems, we give a concise proof of the connectivity of the moduli space of toric integrable systems in dimension four, recovering a known result, and extend it to the case of semitoric integrable systems with a fixed number of focus-focus points and which are in the same twisting index class. In particular, we show that any semitoric system with precisely one focus-focus singular point can be continuously deformed into a system in the same isomorphism class as the Jaynes-Cummings model from optics.
- Published
- 2018
12. A univalent formalization of the p-adic numbers
- Author
-
Vladimir Voevodsky, Álvaro Pelayo, and Michael A. Warren
- Subjects
Discrete mathematics ,Mathematics (miscellaneous) ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Proof assistant ,Algebra over a field ,Univalent foundations ,Constructive ,Computer Science Applications ,Mathematics ,p-adic number - Abstract
The goal of this paper is to report on a formalization of the p-adic numbers in the setting of the second author's univalent foundations program. This formalization, which has been verified in the Coq proof assistant, provides an approach to the p-adic numbers in constructive algebra and analysis.
- Published
- 2015
13. Fermat and the number of fixed points of periodic flows
- Author
-
Leonor Godinho, Silvia Sabatini, and Álvaro Pelayo
- Subjects
Pure mathematics ,Algebra and Number Theory ,Chern class ,Conjecture ,Almost complex manifold ,010102 general mathematics ,General Physics and Astronomy ,Geometric Topology (math.GT) ,Divisibility rule ,Fixed point ,01 natural sciences ,010101 applied mathematics ,Mathematics - Geometric Topology ,Number theory ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Symplectic Geometry (math.SG) ,Calabi–Yau manifold ,Mathematics - Algebraic Topology ,0101 mathematics ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Symplectic geometry ,Mathematics - Abstract
We obtain a general lower bound for the number of fixed points of a circle action on a compact almost complex manifold $M$ of dimension $2n$ with nonempty fixed point set, provided the Chern number $c_1c_{n-1}[M]$ vanishes. The proof combines techniques originating in equivariant K-theory with celebrated number theory results on polygonal numbers, introduced by Pierre de Fermat. This lower bound confirms in many cases a conjecture of Kosniowski from 1979, and is better than existing bounds for some symplectic actions. Moreover, if the fixed point set is discrete, we prove divisibility properties for the number of fixed points, improving similar statements obtained by Hirzebruch in 1999. Our results apply, for example, to a class of manifolds which do not support any Hamiltonian circle action, namely those for which the first Chern class is torsion. This includes, for instance, all symplectic Calabi Yau manifolds., Comment: 27 pages. This article continues the work of arXiv:1307.6766, in particular the article employs classical results in number theory to fully solve the optimization problem presented in arXiv:1307.6766
- Published
- 2015
14. L2-cohomology and complete Hamiltonian manifolds
- Author
-
Álvaro Pelayo, Rafe Mazzeo, and Tudor S. Ratiu
- Subjects
0209 industrial biotechnology ,Pure mathematics ,Metatheorem ,Hodge theory ,010102 general mathematics ,General Physics and Astronomy ,02 engineering and technology ,Fixed point ,16. Peace & justice ,01 natural sciences ,Cohomology ,symbols.namesake ,020901 industrial engineering & automation ,symbols ,Mathematics::Differential Geometry ,Geometry and Topology ,0101 mathematics ,Classical theorem ,Hamiltonian (quantum mechanics) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematics - Abstract
A classical theorem of Frankel for compact Kahler manifolds states that a Kahler S-1-action is Hamiltonian if and only if it has fixed points. We prove a metatheorem which says that when the Hodge theory holds on non-compact manifolds, Frankel's theorem still holds. Finally, we present several concrete situations in which the assumptions of the metatheorem hold. (C) 2014 Elsevier B.V. All rights reserved.
- Published
- 2015
15. Homotopy type theory and Voevodsky’s univalent foundations
- Author
-
Michael A. Warren and Álvaro Pelayo
- Subjects
Algebra ,Type theory ,Computer science ,Applied Mathematics ,General Mathematics ,Homotopy ,Proof assistant ,Homotopy type theory ,Simplicial set ,Algebraic topology ,Univalent foundations ,Axiom - Abstract
Recent discoveries have been made connecting abstract homotopy theory and the field of type theory from logic and theoretical computer science. This has given rise to a new field, which has been christened homotopy type theory. In this direction, Vladimir Voevodsky observed that it is possible to model type theory using simplicial sets and that this model satisfies an additional property, called the Univalence Axiom, which has a number of striking consequences. He has subsequently advocated a program, which he calls univalent foundations, of developing mathematics in the setting of type theory with the Univalence Axiom and possibly other additional axioms motivated by the simplicial set model. Because type theory possesses good computational properties, this program can be carried out in a computer proof assistant. In this paper we give an introduction to homotopy type theory in Voevodsky’s setting, paying attention to both theoretical and practical issues. In particular, the paper serves as an introduction to both the general ideas of homotopy type theory as well as to some of the concrete details of Voevodsky’s work using the well-known proof assistant Coq. The paper is written for a general audience of mathematicians with basic knowledge of algebraic topology; the paper does not assume any preliminary knowledge of type theory, logic, or computer science. Because a defining characteristic of Voevodsky’s program is that the Coq code has fundamental mathematical content, and many of the mathematical concepts which are efficiently captured in the code cannot be explained in standard mathematical English without a lengthy detour through type theory, the later sections of this paper (beginning with Section \ref{sec2}) make use of code; however, all notions are introduced from the beginning and in a self-contained fashion.
- Published
- 2014
16. Minimal models of compact symplectic semitoric manifolds
- Author
-
Joseph Palmer, Daniel M. Kane, and Álvaro Pelayo
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Matrix calculus ,General Physics and Astronomy ,01 natural sciences ,Symplectic toric manifolds ,Mathematical Sciences ,Symplectic vector space ,0103 physical sciences ,FOS: Mathematics ,SL2(Z) ,Fans ,0101 mathematics ,Symplectomorphism ,Moment map ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematics ,Symplectic manifold ,Symplectic group ,010102 general mathematics ,Mathematical analysis ,Symplectic geometry ,16. Peace & justice ,Symplectic representation ,Symplectic matrix ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,Physical Sciences ,Integrable systems ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Geometry and Topology - Abstract
A symplectic semitoric manifold is a symplectic $4$-manifold endowed with a Hamiltonian $(S^1 \times \mathbb{R})$-action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into account the effects of the monodromy near focus-focus singularities. We give two applications of the helix: first, we use it to give a classification of the minimal models of symplectic semitoric manifolds, where "minimal" is in the sense of not admitting any blowdowns. The second application is an extension to the compact case of a well known result of V\~{u} Ngoc about the constraints posed on a symplectic semitoric manifold by the existence of focus-focus singularities. The helix permits to translate a symplectic geometric problem into an algebraic problem, and the paper describes a method to solve this type of algebraic problem., Comment: 40 pages, 7 figures. Presentation improved, typos corrected
- Published
- 2016
17. Sharp symplectic embeddings of cylinders
- Author
-
Álvaro Pelayo, San Vũ Ngọc, Washington University in St Louis, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Washington University in Saint Louis (WUSTL), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Pure mathematics ,General Mathematics ,010102 general mathematics ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,01 natural sciences ,53D35 ,Cylinder (engine) ,law.invention ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,embedding ,symplectic capacity ,Mathematics - Symplectic Geometry ,law ,symplectic geometry ,0103 physical sciences ,Embedding ,010307 mathematical physics ,0101 mathematics ,Symplectic geometry ,Mathematics - Abstract
We show that the cylinder Z^{2n}(1):= B^2(1)\times \mathbb{R}^{2(n-1)} embeds symplectically into B^4(R) \times \mathbb{R}^{2(n-2)} if R \geq \sqrt{3}., Comment: Originally part of version 2 of arXiv:1210.1537
- Published
- 2016
18. Hamiltonian and symplectic symmetries: an introduction
- Author
-
Álvaro Pelayo
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Symplectic group ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,16. Peace & justice ,Symplectic representation ,01 natural sciences ,010101 applied mathematics ,Algebra ,Symplectic vector space ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Superintegrable Hamiltonian system ,0101 mathematics ,Symplectomorphism ,Moment map ,Mathematics::Symplectic Geometry ,Symplectic geometry ,Mathematics ,Symplectic manifold - Abstract
Classical mechanical systems are modeled by a symplectic manifold $(M,\omega)$, and their symmetries, encoded in the action of a Lie group $G$ on $M$ by diffeomorphisms that preserves $\omega$. These actions, which are called "symplectic", have been studied in the past forty years, following the works of Atiyah, Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg in the 1970s and 1980s on symplectic actions of compact abelian Lie groups that are, in addition, of "Hamiltonian" type, i.e. they also satisfy Hamilton's equations. Since then a number of connections with combinatorics, finite dimensional integrable Hamiltonian systems, more general symplectic actions, and topology, have flourished. In this paper we review classical and recent results on Hamiltonian and non Hamiltonian symplectic group actions roughly starting from the results of these authors. The paper also serves as a quick introduction to the basics of symplectic geometry., Comment: 49 pages, 4 figures. This article supersedes arXiv:1501.06480
- Published
- 2016
- Full Text
- View/download PDF
19. Euler-MacLaurin formulas via differential operators
- Author
-
Álvaro Pelayo, Yohann Le Floch, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Washington University in Saint Louis (WUSTL), Department of Mathematics [Univ California Davis] (MATH - UC Davis), University of California [Davis] (UC Davis), University of California (UC)-University of California (UC), DMS-1518420, National Science Foundation, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Washington University in St Louis, Department of Mathematics - University of California, University of California [Davis] ( UC Davis ), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Department of Mathematics [Davis], and University of California-University of California
- Subjects
Pure mathematics ,Spectral theory ,[ MATH.MATH-CA ] Mathematics [math]/Classical Analysis and ODEs [math.CA] ,Euler–Maclaurin formula ,Polytope ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,01 natural sciences ,Mathematics - Spectral Theory ,symbols.namesake ,Dimension (vector space) ,0103 physical sciences ,0101 mathematics ,Mathematics ,[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP] ,Applied Mathematics ,010102 general mathematics ,Function (mathematics) ,Differential operator ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Classical Analysis and ODEs ,Mathematics - Symplectic Geometry ,Euler's formula ,symbols ,010307 mathematical physics ,Asymptotic expansion ,65B15, 41A58, 52B20 ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
Recently there has been a renewed interest in asymptotic Euler-MacLaurin formulas, partly due to applications to spectral theory of differential operators. Using elementary means, we recover such formulas for compactly supported smooth functions f on intervals, polygons, and 3-dimensional polytopes, where the coefficients in the asymptotic expansion are sums of differential operators involving only derivatives of f in directions normal to the faces of the polytope. Our formulas apply to wedges of any dimension. This paper builds on, and is motivated by, works of Guillemin, Sternberg, and others, in the past ten years., Comment: 30 pages, 5 figures. Presentation improved, further motivation and examples added
- Published
- 2016
20. NON-KAHLER SYMPLECTIC MANIFOLDS WITH TORIC SYMMETRIES
- Author
-
Álvaro Pelayo and Yi Lin
- Subjects
Pure mathematics ,General Mathematics ,Kähler manifold ,Symplectic representation ,Mathematics::Geometric Topology ,Manifold ,Algebra ,Homogeneous space ,Mathematics::Differential Geometry ,Symplectomorphism ,Mathematics::Symplectic Geometry ,Moment map ,Mathematics ,Symplectic geometry ,Symplectic manifold - Abstract
Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number and hence it is not a Kahler manifold. This can be viewed as an application of the aforementioned classification.
- Published
- 2009
21. Hofer's question on intermediate symplectic capacities
- Author
-
San Vũ Ngọc, Álvaro Pelayo, Department of Mathematics [Univ California Davis] (MATH - UC Davis), University of California [Davis] (UC Davis), University of California (UC)-University of California (UC), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Department of Mathematics - University of California, University of California [Davis] ( UC Davis ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics [Davis], University of California-University of California, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Combinatorics ,symplectic history ,General Mathematics ,[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS] ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Cylinder ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,53D05, 53D35 ,Mathematics ,Symplectic geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
Main theorems and their proofs unchanged. Results not needed for these proofs removed for clarity (and posted as a separate paper). Title changed to emphasize main results. 21 pages, 7 figures; Roughly twenty five years ago Hofer asked: can the cylinder B^2(1) \times \mathbb{R}^{2(n-1)} be symplectically embedded into B^{2(n-1)}(R) \times \mathbb{R}^2 for some R>0? We show that this is the case if R \geq \sqrt{2^{n-1}+2^{n-2}-2}. We deduce that there are no intermediate capacities, between 1-capacities, first constructed by Gromov in 1985, and n-capacities, answering another question of Hofer. In 2008, Guth reached the same conclusion under the additional hypothesis that the intermediate capacities should satisfy the exhaustion property.
- Published
- 2015
22. Symplectic $G$-capacities and integrable systems
- Author
-
Álvaro Pelayo, Alessio Figalli, and Joseph Palmer
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,Integrable system ,010102 general mathematics ,Lie group ,FOS: Physical sciences ,01 natural sciences ,Theoretical Computer Science ,Mathematics (miscellaneous) ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,0103 physical sciences ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,0101 mathematics ,Invariant (mathematics) ,Exactly Solvable and Integrable Systems (nlin.SI) ,Mathematics::Symplectic Geometry ,Symplectic geometry ,Mathematics ,Computer Science::Information Theory - Abstract
For any Lie group $G$, we construct a $G$-equivariant analogue of symplectic capacities and give examples when $G = \mathbb{T}^k\times\mathbb{R}^{d-k}$, in which case the capacity is an invariant of integrable systems. Then we study the continuity of these capacities, using the natural topologies on the symplectic $G$-categories on which they are defined., Comment: 33 pages, 11 figures
- Published
- 2015
- Full Text
- View/download PDF
23. Unbounded trajectories of dynamical systems
- Author
-
Álvaro Pelayo, Francisco González Gascón, and Daniel Peralta-Salas
- Subjects
Dynamical systems theory ,Semi-infinite ,Applied Mathematics ,Mathematical analysis ,Unbounded orbits ,Foliations ,law.invention ,Divergence-free vector fields ,law ,Orbit (dynamics) ,Cylinder ,Vector field ,Mathematics::Differential Geometry ,Topological techniques ,Divergence (statistics) ,Dynamical system (definition) ,Manifold (fluid mechanics) ,Mathematics - Abstract
It is shown that when a divergence-free vector field without zeros X is defined on a two-dimensional, noncompact manifold, which is not a cylinder, then X must possess an unbounded orbit.
- Published
- 2004
24. The tropical momentum map: a classification of toric log symplectic manifolds
- Author
-
Songhao Li, Marco Gualtieri, Tudor S. Ratiu, and Álvaro Pelayo
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,53D17, 14T05 ,General Mathematics ,0102 computer and information sciences ,Affine manifold ,01 natural sciences ,FOS: Mathematics ,0101 mathematics ,Symplectomorphism ,Moment map ,Mathematics::Symplectic Geometry ,Symplectic manifold ,Mathematics ,010102 general mathematics ,Symplectic representation ,Mathematics::Geometric Topology ,Algebra ,Differential Geometry (math.DG) ,010201 computation theory & mathematics ,Mathematics - Symplectic Geometry ,Affine space ,Symplectic Geometry (math.SG) ,Affine transformation ,Mathematics::Differential Geometry ,Symplectic geometry - Abstract
We give a generalization of toric symplectic geometry to Poisson manifolds which are symplectic away from a collection of hypersurfaces forming a normal crossing configuration. We introduce the tropical momentum map, which takes values in a generalization of affine space called a log affine manifold. Using this momentum map, we obtain a complete classification of such manifolds in terms of decorated log affine polytopes, hence extending the classification of symplectic toric manifolds achieved by Atiyah, Guillemin-Sternberg, Kostant, and Delzant., 41 pages, updated section 3
- Published
- 2014
25. Inverse spectral theory for semiclassical Jaynes-Cummings systems
- Author
-
San Vũ Ngọc, Yohann Le Floch, Álvaro Pelayo, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Washington University in St Louis, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Washington University in Saint Louis (WUSTL), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Spectral theory ,Integrable system ,General Mathematics ,Semiclassical physics ,Inverse ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,01 natural sciences ,Mathematics - Spectral Theory ,symbols.namesake ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Quantum ,Spectral Theory (math.SP) ,Mathematics ,Mathematical physics ,[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP] ,Jaynes–Cummings model ,010102 general mathematics ,Mathematical analysis ,Quantum Physics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,symbols ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Circular symmetry ,Hamiltonian (quantum mechanics) ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
International audience; Quantum semitoric systems form a large class of quantum Hamiltonian integrable systems with circular symmetry which has received great attention in the past decade. They include systems of high interest to physicists and mathematicians such as the Jaynes\--Cummings model (1963), which describes a two-level atom interacting with a quantized mode of an optical cavity, and more generally the so-called systems of Jaynes\--Cummings type. In this paper we consider the joint spectrum of a pair of commuting semiclassical operators forming a quantum integrable system of Jaynes\--Cummings type. We prove, assuming the Bohr\--Sommerfeld rules hold, that if the joint spectrum of two of these systems coincide up to $\mathcal{O}(\hbar^2)$, then the systems are isomorphic.
- Published
- 2014
- Full Text
- View/download PDF
26. On the density function on moduli spaces of toric 4-manifolds
- Author
-
Alessio Figalli and Álvaro Pelayo
- Subjects
Pure mathematics ,Convex geometry ,Computer Science::Information Retrieval ,010102 general mathematics ,Metric Geometry (math.MG) ,Function (mathematics) ,Toric manifold ,Disjoint sets ,01 natural sciences ,Moduli space ,010101 applied mathematics ,Mathematics::Algebraic Geometry ,Mathematics - Metric Geometry ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Natural density ,Symplectic Geometry (math.SG) ,Geometry and Topology ,0101 mathematics ,Mathematics::Symplectic Geometry ,Symplectic geometry ,Mathematics ,Symplectic manifold - Abstract
The optimal density function assigns to each symplectic toric manifold $M$ a number $0 < d \leq 1$ obtained by considering the ratio between the maximum volume of $M$ which can be filled by symplectically embedded disjoint balls and the total symplectic volume of $M$. In the toric version of this problem, $M$ is toric and the balls need to be embedded respecting the toric action on $M$. The goal of this note is first to give a brief survey of the notion of toric symplectic manifold and the recent constructions of moduli space structure on them, and recall how to define a natural density function on this moduli space. Then we review previous works which explain how the study of the density function can be reduced to a problem in convex geometry, and use this correspondence to to give a simple description of the regions of continuity of the maximal density function when the dimension is $4$., 14 pages, 5 figures
- Published
- 2014
- Full Text
- View/download PDF
27. Semiclassical quantization and spectral limits of h-pseudodifferential and Berezin-Toeplitz operators
- Author
-
Álvaro Pelayo, San Vũ Ngọc, Leonid Polterovich, Department of Mathematics ( IASP ), School of Mathematics, Washington University in St Louis, School of Mathematical Sciences [Tel Aviv], Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University [Tel Aviv]-Tel Aviv University [Tel Aviv], Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), IUF, Department of Mathematics (IASP), Washington University in Saint Louis (WUSTL), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), School of Mathematical Sciences [Tel Aviv] (TAU), Raymond and Beverly Sackler Faculty of Exact Sciences [Tel Aviv] (TAU), Tel Aviv University (TAU)-Tel Aviv University (TAU), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Convex hull ,Pure mathematics ,General Mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Semiclassical physics ,FOS: Physical sciences ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,01 natural sciences ,Mathematics - Spectral Theory ,Quantization (physics) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Quantum system ,FOS: Mathematics ,Uniform boundedness ,0101 mathematics ,Quantum ,Spectral Theory (math.SP) ,Mathematical Physics ,Mathematics ,[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP] ,010102 general mathematics ,Spectrum (functional analysis) ,[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph] ,Mathematical Physics (math-ph) ,Toeplitz matrix ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,34L05 ,Mathematics - Symplectic Geometry ,Symplectic Geometry (math.SG) ,[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] ,010307 mathematical physics ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We introduce a minimalistic notion of semiclassical quantization and use it to prove that the convex hull of the semiclassical spectrum of a quantum system given by a collection of commuting operators converges to the convex hull of the spectrum of the associated classical system. This gives a quick alternative solution to the isospectrality problem for quantum toric systems. If the operators are uniformly bounded, the convergence is uniform. Analogous results hold for non-commuting operators., Comment: 27 pages, 3 figures
- Published
- 2014
28. Semiclassical inverse spectral theory for singularities of focus-focus type
- Author
-
San Vũ Ngọc, Álvaro Pelayo, Department of Mathematics ( IASP ), School of Mathematics, Washington University in St Louis, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), IUF, Department of Mathematics (IASP), Washington University in Saint Louis (WUSTL), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP] ,Spectral theory ,Integrable system ,Spectrum (functional analysis) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph] ,Semiclassical physics ,Statistical and Nonlinear Physics ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,81R12 ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Spectral Theory ,Singular value ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics - Symplectic Geometry ,Gravitational singularity ,Lagrangian foliation ,[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematics ,Mathematical physics ,Symplectic geometry ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We prove, assuming that the Bohr-Sommerfeld rules hold, that the joint spectrum near a focus-focus critical value of a quantum integrable system determines the classical Lagrangian foliation around the full focus-focus leaf. The result applies, for instance, to h-pseudodifferential operators, and to Berezin-Toeplitz operators on prequantizable compact symplectic manifolds., Comment: 14 pages, 2 figures
- Published
- 2014
29. Symplectic spectral geometry of semiclassical operators
- Author
-
Álvaro Pelayo
- Subjects
Classical theory ,Spectral theory ,010504 meteorology & atmospheric sciences ,Integrable system ,General Mathematics ,010102 general mathematics ,FOS: Physical sciences ,Spectral geometry ,Semiclassical physics ,Mathematical Physics (math-ph) ,01 natural sciences ,Mathematics - Spectral Theory ,Intersection ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,0101 mathematics ,Spectral Theory (math.SP) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,0105 earth and related environmental sciences ,Mathematics ,Symplectic geometry ,Mathematical physics - Abstract
In the past decade there has been a flurry of activity at the intersection of spectral theory and symplectic geometry. In this paper we review recent results on semiclassical spectral theory for commuting Berezin-Toeplitz and h-pseudodifferential operators. The paper emphasizes the interplay between spectral theory of operators (quantum theory) and symplectic geometry of Hamiltonians (classical theory), with an eye towards recent developments on the geometry of finite dimensional integrable systems., To appear in Bulletin of the Belgian Mathematical Society, 11 pages
- Published
- 2013
30. First steps in symplectic and spectral theory of integrable systems
- Author
-
San Vű Ngọc, Álvaro Pelayo, Department of Mathematics ( IASP ), School of Mathematics, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics (IASP), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Spectral theory ,Integrable system ,Computer science ,Semiclassical physics ,affine structures ,Dynamical Systems (math.DS) ,01 natural sciences ,Hamiltonian system ,53D05, 37J35, 58J50, 81R12, 58J53, 53D50, 35P05, 53D20 ,Mathematics - Spectral Theory ,symbols.namesake ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,0103 physical sciences ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Einstein ,Mathematics - Dynamical Systems ,Quantum ,Spectral Theory (math.SP) ,Applied Mathematics ,010102 general mathematics ,spectral theory ,Bohr model ,Algebra ,[ MATH.MATH-DG ] Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symplectic geometry ,Mathematics - Symplectic Geometry ,symbols ,Integrable systems ,Symplectic Geometry (math.SG) ,quantum systems ,010307 mathematical physics ,singularities ,Analysis ,Symplectic geometry ,semiclassical analysis - Abstract
The paper intends to lay out the first steps towards constructing a unified framework to understand the symplectic and spectral theory of finite dimensional integrable Hamiltonian systems. While it is difficult to know what the best approach to such a large classification task would be, it is possible to single out some promising directions and preliminary problems. This paper discusses them and hints at a possible path, still loosely defined, to arrive at a classification. It mainly relies on recent progress concerning integrable systems with only non-hyperbolic and non-degenerate singularities. This work originated in an attempt to develop a theory aimed at answering some questions in quantum spectroscopy. Even though quantum integrable systems date back to the early days of quantum mechanics, such as the work of Bohr, Sommerfeld and Einstein, the theory did not blossom at the time. The development of semiclassical analysis with microlocal techniques in the last forty years now permits a constant interplay between spectral theory and symplectic geometry. A main goal of this paper is to emphasize the symplectic issues that are relevant to quantum mechanical integrable systems, and to propose a strategy to solve them., 48 pages. Journal request: This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete Contin. Dyn. Syst. following peer review. The definitive publisher-authenticated version (Discrete Contin. Dyn. Syst. vol. 32 (2012) p. 3325-3377) is available online at https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7403
- Published
- 2013
31. Moduli spaces of toric manifolds
- Author
-
Ana Rita Pires, Tudor S. Ratiu, Silvia Sabatini, and Álvaro Pelayo
- Subjects
Pure mathematics ,Toric manifold ,Space (mathematics) ,01 natural sciences ,Moduli space ,Mathematics::Algebraic Geometry ,Mathematics - Metric Geometry ,0103 physical sciences ,FOS: Mathematics ,Delzant polytope ,0101 mathematics ,Mathematics::Symplectic Geometry ,Mathematics ,010102 general mathematics ,Metric Geometry (math.MG) ,53D20, 53D05 ,Metric space ,Compact space ,Hausdorff distance ,Mathematics - Symplectic Geometry ,Metric (mathematics) ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Geometry and Topology ,Symplectic geometry - Abstract
We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result., Comment: To appear in Geometriae Dedicata, minor changes to previous version, 19 pages, 6 figures
- Published
- 2012
- Full Text
- View/download PDF
32. Circle-valued momentum maps for symplectic periodic flows
- Author
-
Tudor S. Ratiu and Álvaro Pelayo
- Subjects
Momentum ,Connected component ,Pure mathematics ,Fixed point ,Mathematics::Symplectic Geometry ,Moment map ,Action (physics) ,Manifold ,Symplectic geometry ,Mathematics ,Symplectic manifold - Abstract
We give a detailed proof of the well-known classical fact that every symplectic circle action on a compact manifold admits a circle valued momentum map relative to some symplectic form. This momentum map is Morse-Bott-Novikov and each connected component of the fixed point set has even index. These proofs do not appear to be written elsewhere.
- Published
- 2012
- Full Text
- View/download PDF
33. Isospectrality for quantum toric integrable systems
- Author
-
Laurent Charles, Álvaro Pelayo, San Vu Ngoc, Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics [Berkeley], University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Mathématiques de Jussieu ( IMJ ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Mathematics Department, University of California [Berkeley], Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), University of California-University of California, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Pure mathematics ,Spectral theory ,Integrable system ,General Mathematics ,[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS] ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Semiclassical physics ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,Dynamical Systems (math.DS) ,01 natural sciences ,Mathematics - Spectral Theory ,symbols.namesake ,FOS: Mathematics ,Mathematics - Dynamical Systems ,0101 mathematics ,Mathematics::Symplectic Geometry ,Spectral Theory (math.SP) ,Symplectic manifold ,Mathematics ,[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP] ,010102 general mathematics ,Spectrum (functional analysis) ,Hilbert space ,spectral theory ,dynamical systems ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,010101 applied mathematics ,Isospectral ,Mathematics - Symplectic Geometry ,symplectic geometry ,symbols ,Symplectic Geometry (math.SG) ,Symplectic geometry ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of such a system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and Poisson commuting functions, up to symplectomorphisms. We also give a full description of the semiclassical spectral theory of quantum toric integrable systems. This type of problem belongs to the realm of classical questions in spectral theory going back to pioneer works of Colin de Verdiere, Guillemin, Sternberg and others in the 1970s and 1980s., Comment: 35 pages, 6 figures
- Published
- 2011
- Full Text
- View/download PDF
34. Symplectic theory of completely integrable Hamiltonian systems
- Author
-
San Vũ Ngọc, Álvaro Pelayo, Department of Mathematics [Berkeley], University of California [Berkeley], University of California-University of California, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Mathematics Department, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Pure mathematics ,Integrable system ,General Mathematics ,Dynamical Systems (math.DS) ,01 natural sciences ,Hamiltonian system ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Covariant Hamiltonian field theory ,Mathematics - Dynamical Systems ,0101 mathematics ,Symplectomorphism ,Mathematics::Symplectic Geometry ,Moment map ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Symplectic manifold ,Applied Mathematics ,010102 general mathematics ,Symplectic representation ,Mathematics - Symplectic Geometry ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,37J35, 14H70, 37J05, 37J15, 53D20 ,Symplectic geometry - Abstract
This paper explains the recent developments on the symplectic theory of Hamiltonian completely integrable systems on symplectic 4-manifolds, compact or not. One fundamental ingredient of these developments has been the understanding of singular affine structures. These developments make use of results obtained by many authors in the second half of the twentieth century, notably Arnold, Duistermaat and Eliasson, of which we also give a concise survey. As a motivation, we present a collection of remarkable results proven in the early and mid 1980s in the theory of Hamiltonian Lie group actions by Atiyah, Guillemin-Sternberg and Delzant among others, and which inspired many people, including the authors, to work on more general Hamiltonian systems. The paper concludes discussing a spectral conjecture for quantum integrable systems., 40 pages
- Published
- 2011
35. Hamiltonian dynamics and spectral theory for spin-oscillators
- Author
-
San Vũ Ngọc, Álvaro Pelayo, Mathematics Department, University of California [Berkeley], Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics [Berkeley], University of California-University of California, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Spectral theory ,Integrable system ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS] ,Semiclassical physics ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,Dynamical Systems (math.DS) ,spin ,01 natural sciences ,Mathematics - Spectral Theory ,symbols.namesake ,Quantization (physics) ,Singularity ,integrable systems ,0103 physical sciences ,oscillator ,FOS: Mathematics ,0101 mathematics ,Mathematics - Dynamical Systems ,Spectral Theory (math.SP) ,Mathematical Physics ,Mathematical physics ,Physics ,Hamiltonian mechanics ,[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP] ,joint spectrum ,010102 general mathematics ,Statistical and Nonlinear Physics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,symbols ,Symplectic Geometry (math.SG) ,Gravitational singularity ,010307 mathematical physics ,quantization ,invariants ,Symplectic geometry ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We study the Hamiltonian dynamics and spectral theory of spin-oscillators. Because of their rich structure, spin-oscillators display fairly general properties of integrable systems with two degrees of freedom. Spin-oscillators have infinitely many transversally elliptic singularities, exactly one elliptic-elliptic singularity and one focus-focus singularity. The most interesting dynamical features of integrable systems, and in particular of spin-oscillators, are encoded in their singularities. In the first part of the paper we study the symplectic dynamics around the focus-focus singularity. In the second part of the paper we quantize the coupled spin-oscillators systems and study their spectral theory. The paper combines techniques from semiclassical analysis with differential geometric methods., 32 pages
- Published
- 2010
36. Fixed points of symplectic periodic flows
- Author
-
Susan Tolman and Álvaro Pelayo
- Subjects
Pure mathematics ,Chern class ,Applied Mathematics ,General Mathematics ,Dynamical Systems (math.DS) ,Fixed point ,Manifold ,Mathematics::K-Theory and Homology ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,Equivariant cohomology ,Mathematics - Dynamical Systems ,Moment map ,Mathematics::Symplectic Geometry ,Morse theory ,Symplectic manifold ,Mathematics ,Symplectic geometry - Abstract
The study of fixed points is a classical subject in geometry and dynamics. If the circle acts in a Hamiltonian fashion on a compact symplectic manifold M, then it is classically known that there are at least 1 + dim(M)/2 fixed points; this follows from Morse theory for the momentum map of the action. In this paper we use Atiyah-Bott-Berline-Vergne (ABBV) localization in equivariant cohomology to prove that this conclusion also holds for symplectic circle actions with non-empty fixed sets, as long as the Chern class map is somewhere injective -- the Chern class map assigns to a fixed point the sum of the action weights at the point. We complement this result with less sharp lower bounds on the number of fixed points, under no assumptions; from a dynamical systems viewpoint, our results imply that there is no symplectic periodic flow with exactly one or two equilibrium points on a compact manifold of dimension at least eight., To appear in Ergodic Theory and Dynamical Systems
- Published
- 2010
37. Symplectic geometry on moduli spaces of J-holomorphic curves
- Author
-
Joseph Coffey, Liat Kessler, and Álvaro Pelayo
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,010102 general mathematics ,Holomorphic function ,Homology (mathematics) ,01 natural sciences ,Omega ,Moduli space ,Differential Geometry (math.DG) ,Differential geometry ,Mathematics - Symplectic Geometry ,0103 physical sciences ,FOS: Mathematics ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,Geometry and Topology ,Compact Riemann surface ,0101 mathematics ,Mathematics::Symplectic Geometry ,Analysis ,Symplectic manifold ,Symplectic geometry ,Mathematics - Abstract
Let (M,\omega) be a symplectic manifold, and Sigma a compact Riemann surface. We define a 2-form on the space of immersed symplectic surfaces in M, and show that the form is closed and non-degenerate, up to reparametrizations. Then we give conditions on a compatible almost complex structure J on (M,\omega) that ensure that the restriction of the form to the moduli space of simple immersed J-holomorphic Sigma-curves in a homology class A in H_2(M,\Z) is a symplectic form, and show applications and examples. In particular, we deduce sufficient conditions for the existence of J-holomorphic Sigma-curves in a given homology class for a generic J., Comment: 16 pages
- Published
- 2009
38. Semitoric integrable systems on symplectic 4-manifolds
- Author
-
San Vu Ngoc, Álvaro Pelayo, Massachusetts Institute of Technology ( MIT ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Massachusetts Institute of Technology (MIT), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Pure mathematics ,Mathematics(all) ,Integrable system ,53D05,53D20,37J35,37J15,57R45 ,Mathematics, general ,General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS] ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,Dynamical Systems (math.DS) ,01 natural sciences ,moment map ,Poisson bracket ,integrable systems ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Mathematics - Dynamical Systems ,Mathematics::Symplectic Geometry ,Mathematics ,010102 general mathematics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics - Symplectic Geometry ,semitoric system ,convex polytope ,Symplectic Geometry (math.SG) ,Gravitational singularity ,010307 mathematical physics ,Hamiltonian (control theory) ,Symplectic geometry - Abstract
24 pages; International audience; Let M be a symplectic 4-manifold. A semitoric integrable system on M is a pair of real-valued smooth functions J, H on M for which J generates a Hamiltonian S^1-action and the Poisson brackets {J,H} vanish. We shall introduce new global symplectic invariants for these systems; some of these invariants encode topological or geometric aspects, while others encode analytical information about the singularities and how they stand with respect to the system. Our goal is to prove that a semitoric system is completely determined by the invariants we introduce.
- Published
- 2009
39. Constructing integrable systems of semitoric type
- Author
-
San Vũ Ngọc, Álvaro Pelayo, Mathematics Department, University of California [Berkeley], Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics [Berkeley], University of California-University of California, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Pure mathematics ,General method ,Integrable system ,General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS] ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,Dynamical Systems (math.DS) ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,Locally integrable function ,Superintegrable Hamiltonian system ,0101 mathematics ,Invariant (mathematics) ,Mathematics - Dynamical Systems ,Mathematics::Symplectic Geometry ,Mathematics ,010102 general mathematics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Algebra ,Uniqueness theorem for Poisson's equation ,Mathematics - Symplectic Geometry ,Symplectic Geometry (math.SG) ,010307 mathematical physics ,53D20, 37J15, 37J35 ,Symplectic geometry - Abstract
Let M be a connected, symplectic 4-manifold. A semitoric integrable system on M essentially consists of a pair of independent, real-valued, smooth functions J and H on the manifold M, for which J generates a Hamiltonian circle action under which H is invariant. In this paper we give a general method to construct, starting from a collection of five ingredients, a symplectic 4-manifold equipped a semitoric integrable system. Then we show that every semitoric integrable system on a symplectic 4-manifold is obtained in this fashion. In conjunction with the uniqueness theorem proved recently by the authors (Invent. Math. 2009), this gives a classification of semitoric integrable systems on 4-manifolds, in terms of five invariants. Some of the invariants are geometric, others are analytic and others are combinatorial/group-theoretic., Comment: 28 pages, 4 figures
- Published
- 2009
- Full Text
- View/download PDF
40. Symplectic Actions of $2$-Tori on $4$-Manifolds
- Author
-
Alvaro Pelayo and Alvaro Pelayo
- Subjects
- Low-dimensional topology, Symplectic manifolds, Torus (Geometry)
- Abstract
In this paper the author classifies symplectic actions of $2$-tori on compact connected symplectic $4$-manifolds, up to equivariant symplectomorphisms. This extends results of Atiyah, Guillemin-Sternberg, Delzant and Benoist. The classification is in terms of a collection of invariants of the topology of the manifold, of the torus action and of the symplectic form. The author constructs explicit models of such symplectic manifolds with torus actions, defined in terms of these invariants.
- Published
- 2010
41. Toric symplectic ball packing
- Author
-
Álvaro Pelayo
- Subjects
Pure mathematics ,Convex geometry ,Torus ,53D20 ,52B11 ,Packing problems ,53D05 ,Mathematics - Symplectic Geometry ,Ball (bearing) ,FOS: Mathematics ,Equivariant map ,Symplectic Geometry (math.SG) ,Mathematics - Combinatorics ,Geometry and Topology ,Combinatorics (math.CO) ,Mathematics::Symplectic Geometry ,Symplectic geometry ,Mathematics - Abstract
We define and solve the toric version of the symplectic ball packing problem, in the sense of listing all 2n-dimensional symplectic-toric manifolds which admit a perfect packing by balls embedded in a symplectic and torus equivariant fashion. In order to do this we first describe a problem in geometric-combinatorics which is equivalent to the toric symplectic ball packing problem. Then we solve this problem using arguments from Convex Geometry and Delzant theory. Applications to symplectic blowing-up are also presented, and some further questions are raised in the last section., 17 pages, 6 figures
- Published
- 2007
42. Topology of spaces of equivariant symplectic embeddings
- Author
-
Álvaro Pelayo
- Subjects
Mathematics - Differential Geometry ,Applied Mathematics ,General Mathematics ,Homotopy ,53D20 ,Topology ,Mathematics::Algebraic Topology ,53D05 ,Differential Geometry (math.DG) ,Mathematics - Symplectic Geometry ,Step function ,FOS: Mathematics ,Equivariant map ,Embedding ,Symplectic Geometry (math.SG) ,Ball (mathematics) ,Invariant (mathematics) ,Mathematics::Symplectic Geometry ,Symplectic geometry ,Mathematics ,Symplectic manifold - Abstract
We compute the homotopy type of the space of T^n-equivariant symplectic embeddings from the standard 2n-dimensional ball of some fixed radius into a 2n-dimensional symplectic-toric manifold M, and use this computation to define a Z-valued step function on the positive real line which is an invariant of the symplectic-toric type of M. We conclude with a discussion of the partially equivariant case of this result., Comment: 13 pages, 4 figures
- Published
- 2007
- Full Text
- View/download PDF
43. Maximal ball packings of symplectic-toric manifolds
- Author
-
Benjamin Schmidt and Álvaro Pelayo
- Subjects
General Mathematics ,Regular polygon ,53D20 ,Manifold ,52A37 ,Combinatorics ,53D05 ,Packing problems ,Mathematics - Symplectic Geometry ,FOS: Mathematics ,Mathematics - Combinatorics ,Equivariant map ,Symplectic Geometry (math.SG) ,Diffeomorphism ,Ball (mathematics) ,Combinatorics (math.CO) ,Mathematics::Symplectic Geometry ,Symplectic geometry ,Mathematics - Abstract
Let M be a symplectic-toric manifold of dimension at least four. This paper investigates the so called symplectic ball packing problem in the toral equivariant setting. We show that the set of toric symplectic ball packings of M admits the structure of a convex polytope. Previous work of the first author shows that up to equivalence, only CP^1 x CP^1 and CP^2 admit density one packings when n=2 and only CP^n admits density one packings when n>2. In contrast, we show that for a fixed n>=2 and each r in (0, 1), there are uncountably many inequivalent 2n-dimensional symplectic-toric manifolds with a maximal toric packing of density r. This result follows from a general analysis of how the densities of maximal packings change while varying a given symplectic-toric manifold through a family of symplectic-toric manifolds that are equivariantly diffeomorphic but not equivariantly symplectomorphic., 19 pages, submitted. Main result strengthened and minor mistake corrected in its statement. Overall presentation improved
- Published
- 2007
- Full Text
- View/download PDF
44. Reduced phase space and toric variety coordinatizations of Delzant spaces
- Author
-
Johannes J. Duistermaat and Álvaro Pelayo
- Subjects
Pure mathematics ,Simple (abstract algebra) ,General Mathematics ,Phase space ,Toric variety ,Torus ,Algebraic geometry ,Fixed point ,Space (mathematics) ,Mathematics::Symplectic Geometry ,Mathematics ,Symplectic geometry - Abstract
In this note we describe the natural coordinatizations of a Delzant space defined as a reduced phase space (symplectic geometry view-point) and give explicit formulas for the coordinate transformations. For each fixed point of the torus action on the Delzant polytope, we have a maximal coordinatization of an open cell in the Delzant space which contains the fixed point. This cell is equal to the domain of definition of one of the natural coordinatizations of the Delzant space as a toric variety (complex algebraic geometry view-point), and we give an explicit formula for the toric variety coordinates in terms of the reduced phase space coordinates. We use considerations in the maximal coordinate neighborhoods to give simple proofs of some of the basic facts about the Delzant space, as a reduced phase space, and as a toric variety. These can be viewed as a first application of the coordinatizations, and serve to make the presentation more self-contained.
- Published
- 2009
45. Topology of symplectic torus actions with symplectic orbits
- Author
-
Johannes J. Duistermaat, Álvaro Pelayo, Analysis, and Afd Mathematisch Instituut
- Subjects
Foliation ,Mathematics(all) ,Lie group ,Mathematics, general ,General Mathematics ,Symplectic manifold ,Geometry ,Distribution ,Topology ,Symplectic vector space ,Betti number ,Applications of Mathematics ,Symplectomorphism ,Moment map ,Mathematics::Symplectic Geometry ,Symplectic orbit ,Mathematics ,Symplectic group ,Symplectic representation ,Mathematics::Geometric Topology ,Symplectic matrix ,Algebra ,Orbifold ,Torus action ,Analysis ,Symplectic geometry - Abstract
We give a concise overview of the classification theory of symplectic man- ifolds equipped with torus actions for which the orbits are symplectic (this is equiv- alent to the existence of a symplectic principal orbit), and apply this theory to study the structure of the leaf space induced by the action. In particular we show that if M is a symplectic manifold on which a torus T acts effectively with symplec- tic orbits, then the leaf space M/T is a very good orbifold with first Betti number b1(M/T ) = b1(M) − dim T.
- Full Text
- View/download PDF
46. Fiber connectivity and bifurcation diagrams of almost toric integrable systems
- Author
-
San Vu Ngoc, Álvaro Pelayo, Tudor S. Ratiu, Department of Mathematics [San Diego], University of California [San Diego] (UC San Diego), University of California-University of California, Section de Mathématiques, École Polytechnique Fédérale de Lausanne, Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Department of Mathematics [Univ California San Diego] (MATH - UC San Diego), University of California (UC)-University of California (UC), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Pure mathematics ,Integrable system ,37J35, 53D05, 53D20 ,Lagrangian fibrations ,Fibration ,affine structures ,16. Peace & justice ,Bifurcation diagram ,Hamiltonian system ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,symplectic geometry ,Integrable systems ,quantum systems ,Gravitational singularity ,Geometry and Topology ,[MATH]Mathematics [math] ,Mathematics::Symplectic Geometry ,singularities ,Bifurcation ,Symplectic geometry ,Mathematics ,Symplectic manifold - Abstract
International audience; We describe the bifurcation diagrams of almost toric integrable Hamiltonian systems on a four dimensional symplectic manifold MM, not necessarily compact. We prove that, under a weak assumption, the connectivity of the fibers of the induced singular Lagrangian fibration M→R^2 can be detected from the bifurcation diagram alone. In this case, it is possible to give a detailed description of the image of the fibration.
47. De planctu ecclesiæ : Alvari Pelagij ... ex ordine minorit
- Author
-
Biblioteca Histórica, Álvaro PELAYO, Biblioteca Histórica, and Álvaro PELAYO
- Abstract
[22], 100, 229 h., [1] h. en blanco ; Fol.
48. De planctu ecclesiæ : Alvari Pelagij ... ex ordine minorit
- Author
-
Biblioteca Histórica, Álvaro PELAYO, Biblioteca Histórica, and Álvaro PELAYO
- Abstract
[22], 100, 229 h., [1] h. en blanco ; Fol.
49. The affine invariant of proper semitoric integrable systems.
- Author
-
Álvaro Pelayo, Tudor S Ratiu, and San Vu Ngọc
- Subjects
- *
INTEGRABLE functions , *SPHERICAL pendulums , *ISOMORPHISM (Mathematics) , *MATHEMATICAL functions , *LAGRANGIAN functions , *LAGRANGIAN mechanics - Abstract
This paper initiates the study of semitoric integrable systems with two degrees of freedom and with proper momentum-energy map, but with possibly nonproper S1-momentum map. This class of systems includes many standard examples, such as the spherical pendulum. To each such system we associate a subset of , invariant under a natural notion of isomorphism and encoding the integral affine structure of the singular Lagrangian fibration, in the spirit of Delzant polygons for toric systems. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.