14 results on '"Świerkosz K"'
Search Results
2. Directional turnover towards larger-ranged plants over time and across habitats.
- Author
-
Staude, I.R., Pereira, H.M., Daskalova, G.N., Bernhardt-Römermann, M., Diekmann, M., Pauli, H., Van Calster, H., Vellend, M., Bjorkman, A.D., Brunet, J., De Frenne, P., Hédl, R., Jandt, U., Lenoir, J., Myers-Smith, I.H., Verheyen, K., Wipf, S., Wulf, M., Andrews, C., Barančok, P., Barni, E., Benito-Alonso, J-L., Bennie, J., Berki, I., Blüml, V., Chudomelová, M., Decocq, G., Dick, J.T.A., Dirnböck, T., Durak, T., Eriksson, O., Erschbamer, B., Graae, B.J., Heinken, T., Schei, F.H., Jaroszewicz, B., Kopecký, M., Kudernatsch, T., Macek, M., Malicki, M., Máliš, F., Michelsen, O., Naaf, T., Nagel, T.A., Newton, Adrian, Nicklas, L., Oddi, L., Ortmann-Ajkai, A., Palaj, A., Petraglia, A., Petřík, P., Pielech, R., Porro, F., Puşcaş, M., Reczyńska, K., Rixen, C., Schmidt, W., Standovár, T., Steinbauer, K., Świerkosz, K., Teleki, B., Theurillat, J-P., Turtureanu, P.D., Ursu, T-M., Vanneste, T., Vergeer, P., Vild, O., Villar, L., Vittoz, P., Winkler, M., Baeten, L., Staude, I.R., Pereira, H.M., Daskalova, G.N., Bernhardt-Römermann, M., Diekmann, M., Pauli, H., Van Calster, H., Vellend, M., Bjorkman, A.D., Brunet, J., De Frenne, P., Hédl, R., Jandt, U., Lenoir, J., Myers-Smith, I.H., Verheyen, K., Wipf, S., Wulf, M., Andrews, C., Barančok, P., Barni, E., Benito-Alonso, J-L., Bennie, J., Berki, I., Blüml, V., Chudomelová, M., Decocq, G., Dick, J.T.A., Dirnböck, T., Durak, T., Eriksson, O., Erschbamer, B., Graae, B.J., Heinken, T., Schei, F.H., Jaroszewicz, B., Kopecký, M., Kudernatsch, T., Macek, M., Malicki, M., Máliš, F., Michelsen, O., Naaf, T., Nagel, T.A., Newton, Adrian, Nicklas, L., Oddi, L., Ortmann-Ajkai, A., Palaj, A., Petraglia, A., Petřík, P., Pielech, R., Porro, F., Puşcaş, M., Reczyńska, K., Rixen, C., Schmidt, W., Standovár, T., Steinbauer, K., Świerkosz, K., Teleki, B., Theurillat, J-P., Turtureanu, P.D., Ursu, T-M., Vanneste, T., Vergeer, P., Vild, O., Villar, L., Vittoz, P., Winkler, M., and Baeten, L.
- Abstract
Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
3. Long-term nitrogen deposition reduces the diversity of nitrogen-fixing plants.
- Author
-
Moreno-García P, Montaño-Centellas F, Liu Y, Reyes-Mendez EY, Jha RR, Guralnick RP, Folk R, Waller DM, Verheyen K, Baeten L, Becker-Scarpitta A, Berki I, Bernhardt-Römermann M, Brunet J, Van Calster H, Chudomelová M, Closset D, De Frenne P, Decocq G, Gilliam FS, Grytnes JA, Hédl R, Heinken T, Jaroszewicz B, Kopecký M, Lenoir J, Macek M, Máliš F, Naaf T, Orczewska A, Petřík P, Reczyńska K, Schei FH, Schmidt W, Stachurska-Swakoń A, Standovár T, Świerkosz K, Teleki B, Vild O, and Li D
- Subjects
- Forests, Climate Change, United States, Europe, Ecosystem, Nitrogen metabolism, Nitrogen Fixation, Biodiversity, Plants metabolism, Phylogeny
- Abstract
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the "winners" and "losers" among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
- Published
- 2024
- Full Text
- View/download PDF
4. Unexpected westward range shifts in European forest plants link to nitrogen deposition.
- Author
-
Sanczuk P, Verheyen K, Lenoir J, Zellweger F, Lembrechts JJ, Rodríguez-Sánchez F, Baeten L, Bernhardt-Römermann M, De Pauw K, Vangansbeke P, Perring MP, Berki I, Bjorkman AD, Brunet J, Chudomelová M, De Lombaerde E, Decocq G, Dirnböck T, Durak T, Greiser C, Hédl R, Heinken T, Jandt U, Jaroszewicz B, Kopecký M, Landuyt D, Macek M, Máliš F, Naaf T, Nagel TA, Petřík P, Reczyńska K, Schmidt W, Standovár T, Staude IR, Świerkosz K, Teleki B, Vanneste T, Vild O, Waller D, and De Frenne P
- Subjects
- Europe, Trees metabolism, Biodiversity, Climate Change, Forests, Nitrogen metabolism, Plant Dispersal, Air Pollution
- Abstract
Climate change is commonly assumed to induce species' range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone.
- Published
- 2024
- Full Text
- View/download PDF
5. Evaluating plant lineage losses and gains in temperate forest understories: a phylogenetic perspective on climate change and nitrogen deposition.
- Author
-
Padullés Cubino J, Lenoir J, Li D, Montaño-Centellas FA, Retana J, Baeten L, Bernhardt-Römermann M, Chudomelová M, Closset D, Decocq G, De Frenne P, Diekmann M, Dirnböck T, Durak T, Hédl R, Heinken T, Jaroszewicz B, Kopecký M, Macek M, Máliš F, Naaf T, Orczewska A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Verheyen K, Vild O, Waller D, Wulf M, and Chytrý M
- Subjects
- Phylogeny, Climate Change, Forests, Plants, Biodiversity, Nitrogen
- Abstract
Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable., (© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.)
- Published
- 2024
- Full Text
- View/download PDF
6. Differentiation of natural scrub communities of the Cotoneastro-Amelanchieretum group in Central Europe.
- Author
-
Świerkosz K and Reczyńska K
- Subjects
- Europe, Soil, Temperature, Ecosystem, Plants
- Abstract
Most of Central European rocky scrub communities formed by Cotoneaster integerrimus, Juniperus communis and Amelanchier ovalis are included in the association Cotoneastro-Amelanchieretum (= Junipero-Cotoneasteretum). However, this leads to the creation of syntaxon whose internal diversity is so great that it seems necessary to examine validity of its existence in the current form. This diversity entails species composition, habitat requirements and geographical distribution. Therefore, we posed the following objectives: i) to investigate the variability of species composition of the rocky scrub; (ii) to determine if there are ecological differences between the communities distinguished by species variability; (iii) to determine the geographical ranges of individual syntaxa. Altogether we analyzed 387 phytosociological relevés from Central Europe. Vegetation types of rocky scrubs were identified using the unsupervised K-means algorithm and detrended correspondence analysis. Mean Ellenberg's indicator values were applied to identify the environmental gradients shaping the plant communities. Obtained results confirmed the validity of dividing this broadly defined syntaxon into six distinct vegetation units. In order to present the studied communities in a broader context, we included into our analyses other rocky scrub with the occurrence of Cotoneaster sp. and A. ovalis, which formed the remaining three clusters. The observed differences in species composition were further supported by significant differences in soil reaction, temperature and continentality between the syntaxa. Moreover, the distinguished communities differed among one another in geographical range. Our study provides a new typology of the selected type of natural rocky scrub vegetation in Central Europe which involves environmental aspects, hence better reflects community-habitat relationships. This study also indicates a need for further revision of the classification of other types of natural scrub communities. Such classification should be based on modern data analysis methods and should primarily focus on lower vegetation units at pan-European scale., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
7. Directional turnover towards larger-ranged plants over time and across habitats.
- Author
-
Staude IR, Pereira HM, Daskalova GN, Bernhardt-Römermann M, Diekmann M, Pauli H, Van Calster H, Vellend M, Bjorkman AD, Brunet J, De Frenne P, Hédl R, Jandt U, Lenoir J, Myers-Smith IH, Verheyen K, Wipf S, Wulf M, Andrews C, Barančok P, Barni E, Benito-Alonso JL, Bennie J, Berki I, Blüml V, Chudomelová M, Decocq G, Dick J, Dirnböck T, Durak T, Eriksson O, Erschbamer B, Graae BJ, Heinken T, Schei FH, Jaroszewicz B, Kopecký M, Kudernatsch T, Macek M, Malicki M, Máliš F, Michelsen O, Naaf T, Nagel TA, Newton AC, Nicklas L, Oddi L, Ortmann-Ajkai A, Palaj A, Petraglia A, Petřík P, Pielech R, Porro F, Puşcaş M, Reczyńska K, Rixen C, Schmidt W, Standovár T, Steinbauer K, Świerkosz K, Teleki B, Theurillat JP, Turtureanu PD, Ursu TM, Vanneste T, Vergeer P, Vild O, Villar L, Vittoz P, Winkler M, and Baeten L
- Subjects
- Ecosystem, Forests, Plants, Biodiversity, Grassland
- Abstract
Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation., (© 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
8. Response to Comment on "Forest microclimate dynamics drive plant responses to warming".
- Author
-
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, and Coomes D
- Subjects
- Plants, Forests, Microclimate
- Abstract
Schall and Heinrichs question our interpretation that the climatic debt in understory plant communities is locally modulated by canopy buffering. However, our results clearly show that the discrepancy between microclimate warming rates and thermophilization rates is highest in forests where canopy cover was reduced, which suggests that the need for communities to respond to warming is highest in those forests., (Copyright © 2020, American Association for the Advancement of Science.)
- Published
- 2020
- Full Text
- View/download PDF
9. Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome.
- Author
-
Staude IR, Waller DM, Bernhardt-Römermann M, Bjorkman AD, Brunet J, De Frenne P, Hédl R, Jandt U, Lenoir J, Máliš F, Verheyen K, Wulf M, Pereira HM, Vangansbeke P, Ortmann-Ajkai A, Pielech R, Berki I, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Macek M, Malicki M, Naaf T, Nagel TA, Petřík P, Reczyńska K, Schei FH, Schmidt W, Standovár T, Świerkosz K, Teleki B, Van Calster H, Vild O, and Baeten L
- Subjects
- Biodiversity, Europe, Plants, Ecosystem, Forests
- Abstract
Biodiversity time series reveal global losses and accelerated redistributions of species, but no net loss in local species richness. To better understand how these patterns are linked, we quantify how individual species trajectories scale up to diversity changes using data from 68 vegetation resurvey studies of seminatural forests in Europe. Herb-layer species with small geographic ranges are being replaced by more widely distributed species, and our results suggest that this is due less to species abundances than to species nitrogen niches. Nitrogen deposition accelerates the extinctions of small-ranged, nitrogen-efficient plants and colonization by broadly distributed, nitrogen-demanding plants (including non-natives). Despite no net change in species richness at the spatial scale of a study site, the losses of small-ranged species reduce biome-scale (gamma) diversity. These results provide one mechanism to explain the directional replacement of small-ranged species within sites and thus explain patterns of biodiversity change across spatial scales.
- Published
- 2020
- Full Text
- View/download PDF
10. Forest microclimate dynamics drive plant responses to warming.
- Author
-
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, and Coomes D
- Subjects
- Europe, Forests, Global Warming, Microclimate, Trees physiology
- Abstract
Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization). Species responses often lag behind climate warming, but the reasons for such lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in European forests and show that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change. Reciprocal effects between plants and microclimates are key to understanding the response of forest biodiversity and functioning to climate and land-use changes., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF
11. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition.
- Author
-
Perring MP, Diekmann M, Midolo G, Schellenberger Costa D, Bernhardt-Römermann M, Otto JCJ, Gilliam FS, Hedwall PO, Nordin A, Dirnböck T, Simkin SM, Máliš F, Blondeel H, Brunet J, Chudomelová M, Durak T, De Frenne P, Hédl R, Kopecký M, Landuyt D, Li D, Manning P, Petřík P, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Vild O, Waller DM, and Verheyen K
- Subjects
- Biodiversity, Ecosystem, Nitrogen Cycle, Plants, Soil, Trees growth & development, Forests, Nitrogen analysis
- Abstract
Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
12. Considerations and consequences of allowing DNA sequence data as types of fungal taxa.
- Author
-
Zamora JC, Svensson M, Kirschner R, Olariaga I, Ryman S, Parra LA, Geml J, Rosling A, Adamčík S, Ahti T, Aime MC, Ainsworth AM, Albert L, Albertó E, García AA, Ageev D, Agerer R, Aguirre-Hudson B, Ammirati J, Andersson H, Angelini C, Antonín V, Aoki T, Aptroot A, Argaud D, Sosa BIA, Aronsen A, Arup U, Asgari B, Assyov B, Atienza V, Bandini D, Baptista-Ferreira JL, Baral HO, Baroni T, Barreto RW, Beker H, Bell A, Bellanger JM, Bellù F, Bemmann M, Bendiksby M, Bendiksen E, Bendiksen K, Benedek L, Bérešová-Guttová A, Berger F, Berndt R, Bernicchia A, Biketova AY, Bizio E, Bjork C, Boekhout T, Boertmann D, Böhning T, Boittin F, Boluda CG, Boomsluiter MW, Borovička J, Brandrud TE, Braun U, Brodo I, Bulyonkova T, Burdsall HH Jr, Buyck B, Burgaz AR, Calatayud V, Callac P, Campo E, Candusso M, Capoen B, Carbó J, Carbone M, Castañeda-Ruiz RF, Castellano MA, Chen J, Clerc P, Consiglio G, Corriol G, Courtecuisse R, Crespo A, Cripps C, Crous PW, da Silva GA, da Silva M, Dam M, Dam N, Dämmrich F, Das K, Davies L, De Crop E, De Kesel A, De Lange R, De Madrignac Bonzi B, Dela Cruz TEE, Delgat L, Demoulin V, Desjardin DE, Diederich P, Dima B, Dios MM, Divakar PK, Douanla-Meli C, Douglas B, Drechsler-Santos ER, Dyer PS, Eberhardt U, Ertz D, Esteve-Raventós F, Salazar JAE, Evenson V, Eyssartier G, Farkas E, Favre A, Fedosova AG, Filippa M, Finy P, Flakus A, Fos S, Fournier J, Fraiture A, Franchi P, Molano AEF, Friebes G, Frisch A, Fryday A, Furci G, Márquez RG, Garbelotto M, García-Martín JM, Otálora MAG, Sánchez DG, Gardiennet A, Garnica S, Benavent IG, Gates G, da Cruz Lima Gerlach A, Ghobad-Nejhad M, Gibertoni TB, Grebenc T, Greilhuber I, Grishkan B, Groenewald JZ, Grube M, Gruhn G, Gueidan C, Gulden G, Gusmão LF, Hafellner J, Hairaud M, Halama M, Hallenberg N, Halling RE, Hansen K, Harder CB, Heilmann-Clausen J, Helleman S, Henriot A, Hernandez-Restrepo M, Herve R, Hobart C, Hoffmeister M, Høiland K, Holec J, Holien H, Hughes K, Hubka V, Huhtinen S, Ivančević B, Jagers M, Jaklitsch W, Jansen A, Jayawardena RS, Jeppesen TS, Jeppson M, Johnston P, Jørgensen PM, Kärnefelt I, Kalinina LB, Kantvilas G, Karadelev M, Kasuya T, Kautmanová I, Kerrigan RW, Kirchmair M, Kiyashko A, Knapp DG, Knudsen H, Knudsen K, Knutsson T, Kolařík M, Kõljalg U, Košuthová A, Koszka A, Kotiranta H, Kotkova V, Koukol O, Kout J, Kovács GM, Kříž M, Kruys Å, Kučera V, Kudzma L, Kuhar F, Kukwa M, Arun Kumar TK, Kunca V, Kušan I, Kuyper TW, Lado C, Læssøe T, Lainé P, Langer E, Larsson E, Larsson KH, Laursen G, Lechat C, Lee S, Lendemer JC, Levin L, Lindemann U, Lindström H, Liu X, Hernandez RCL, Llop E, Locsmándi C, Lodge DJ, Loizides M, Lőkös L, Luangsa-Ard J, Lüderitz M, Lumbsch T, Lutz M, Mahoney D, Malysheva E, Malysheva V, Manimohan P, Marin-Felix Y, Marques G, Martínez-Gil R, Marson G, Mata G, Matheny PB, Mathiassen GH, Matočec N, Mayrhofer H, Mehrabi M, Melo I, Mešić A, Methven AS, Miettinen O, Romero AMM, Miller AN, Mitchell JK, Moberg R, Moreau PA, Moreno G, Morozova O, Morte A, Muggia L, González GM, Myllys L, Nagy I, Nagy LG, Neves MA, Niemelä T, Nimis PL, Niveiro N, Noordeloos ME, Nordin A, Noumeur SR, Novozhilov Y, Nuytinck J, Ohenoja E, Fiuza PO, Orange A, Ordynets A, Ortiz-Santana B, Pacheco L, Pál-Fám F, Palacio M, Palice Z, Papp V, Pärtel K, Pawlowska J, Paz A, Peintner U, Pennycook S, Pereira OL, Daniëls PP, Pérez-De-Gregorio Capella MÀ, Del Amo CMP, Gorjón SP, Pérez-Ortega S, Pérez-Vargas I, Perry BA, Petersen JH, Petersen RH, Pfister DH, Phukhamsakda C, Piątek M, Piepenbring M, Pino-Bodas R, Esquivel JPP, Pirot P, Popov ES, Popoff O, Álvaro MP, Printzen C, Psurtseva N, Purahong W, Quijada L, Rambold G, Ramírez NA, Raja H, Raspé O, Raymundo T, Réblová M, Rebriev YA, de Dios Reyes García J, Ripoll MÁR, Richard F, Richardson MJ, Rico VJ, Robledo GL, Barbosa FR, Rodriguez-Caycedo C, Rodriguez-Flakus P, Ronikier A, Casas LR, Rusevska K, Saar G, Saar I, Salcedo I, Martínez SMS, Montoya CAS, Sánchez-Ramírez S, Sandoval-Sierra JV, Santamaria S, Monteiro JS, Schroers HJ, Schulz B, Schmidt-Stohn G, Schumacher T, Senn-Irlet B, Ševčíková H, Shchepin O, Shirouzu T, Shiryaev A, Siepe K, Sir EB, Sohrabi M, Soop K, Spirin V, Spribille T, Stadler M, Stalpers J, Stenroos S, Suija A, Sunhede S, Svantesson S, Svensson S, Svetasheva TY, Świerkosz K, Tamm H, Taskin H, Taudière A, Tedebrand JO, Lahoz RT, Temina M, Thell A, Thines M, Thor G, Thüs H, Tibell L, Tibell S, Timdal E, Tkalčec Z, Tønsberg T, Trichies G, Triebel D, Tsurykau A, Tulloss RE, Tuovinen V, Sosa MU, Urcelay C, Valade F, Garza RV, van den Boom P, Van Vooren N, Vasco-Palacios AM, Vauras J, Velasco Santos JM, Vellinga E, Verbeken A, Vetlesen P, Vizzini A, Voglmayr H, Volobuev S, von Brackel W, Voronina E, Walther G, Watling R, Weber E, Wedin M, Weholt Ø, Westberg M, Yurchenko E, Zehnálek P, Zhang H, Zhurbenko MP, and Ekman S
- Abstract
Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11
th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.- Published
- 2018
- Full Text
- View/download PDF
13. Global environmental change effects on plant community composition trajectories depend upon management legacies.
- Author
-
Perring MP, Bernhardt-Römermann M, Baeten L, Midolo G, Blondeel H, Depauw L, Landuyt D, Maes SL, De Lombaerde E, Carón MM, Vellend M, Brunet J, Chudomelová M, Decocq G, Diekmann M, Dirnböck T, Dörfler I, Durak T, De Frenne P, Gilliam FS, Hédl R, Heinken T, Hommel P, Jaroszewicz B, Kirby KJ, Kopecký M, Lenoir J, Li D, Máliš F, Mitchell FJG, Naaf T, Newman M, Petřík P, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Van Calster H, Vild O, Wagner ER, Wulf M, and Verheyen K
- Subjects
- Climate, Europe, Forests, Human Activities, Nitrogen, Biodiversity, Plants classification
- Abstract
The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change., (© 2017 John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
14. Combining community resurvey data to advance global change research.
- Author
-
Verheyen K, De Frenne P, Baeten L, Waller DM, Hédl R, Perring MP, Blondeel H, Brunet J, Chudomelova M, Decocq G, De Lombaerde E, Depauw L, Dirnböck T, Durak T, Eriksson O, Gilliam FS, Heinken T, Heinrichs S, Hermy M, Jaroszewicz B, Jenkins MA, Johnson SE, Kirby KJ, Kopecký M, Landuyt D, Lenoir J, Li D, Macek M, Maes S, Máliš F, Mitchell FJG, Naaf T, Peterken G, Petřík P, Reczyńska K, Rogers DA, Schei FH, Schmidt W, Standovár T, Świerkosz K, Ujházy K, Van Calster H, Vellend M, Vild O, Woods K, Wulf M, and Bernhard-Römermann M
- Abstract
More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of, and interactions among, multiple drivers joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this paper we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver-orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid implementation of multi-region resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research., Competing Interests: None of the authors has a conflict of interest.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.