1. 基于指定应力方法的混凝土开裂的 三维数值模拟.
- Author
-
张晓庆, 王家林, 易志坚, 张拓, and 王敏
- Abstract
Based on the specified stress method, a new spatial finite element formulation for concrete cracking was derived according to the linear elasticity theory. This formulation was used to create a calculation program with the C++ language. The accuracy of the proposed cracking algorithm was validated through 3 numerical examples, where the theoretical results were compared with the ABAQUS XFEM calculations. Beyond conventional cracking algorithms, the proposed cracking algorithm has the advantage that once the stress at the cracking integration point is specified as zero (in the cracking state), it will remain zero in subsequent calculations. There is no need for an iterative process to adjust it to zero, which means significant reduction of the number of iterations and the amount of data processing required in each iteration. In comparison to the ABAQUS XFEM algorithm, which is limited to the 1st-order elements, the proposed cracking algorithm can utilize the 2nd-order elements for crack calculation, and allows for a more accurate determination of the cracked regions and states under the same computational conditions. This work provides a new approach and algorithm for commercial finite element software to conduct more refined crack calculations with the 2nd-order elements. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF