1. Localizations at hyperplane arrangements: combinatorics and D-modules
- Author
-
Álvarez Montaner, Josep, Jiménez, Francisco Jesús Castro, Enríquez, José María Ucha, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, and Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
- Subjects
Geometry, Algebraic ,Hyperplane arrangements ,Characteristic cycle ,Àlgebra diferencial ,Localization ,14 Algebraic geometry::14B Local theory [Classificació AMS] ,Espais analítics ,32 Several complex variables and analytic spaces::32C Analytic spaces [Classificació AMS] ,Geometria algèbrica ,Analytic spaces ,Logarithmic D-modules ,Differential algebra ,13 Commutative rings and algebras::13N Differential algebra [Classificació AMS] - Abstract
We describe an algorithm deciding if the annihilating ideal of the meromorphic function 1 f , where f = 0 defines an arrangement of hyperplanes, is generated by linear differential operators of order 1. The algorithm is based on the comparison of two characteristic cycles and uses a combinatorial description due to `Alvarez-Montaner, Garc´ıa–L´opez and Zarzuela of the characteristic cycle of the D-module of meromorphic functions with respect to f.
- Published
- 2004