1. Dysregulation of amino acids balance as potential serum-metabolite biomarkers for diagnosis and prognosis of diabetic retinopathy: a metabolomics study.
- Author
-
Amiri-Dashatan, Nasrin, Etemadi, Samira Motedayen, Besharati, Shahin, Farahani, Masoumeh, and Moghaddam, Arezoo Karimi
- Subjects
- *
TYPE 2 diabetes , *DIABETIC retinopathy , *PRINCIPAL components analysis , *DIABETES complications , *METABOLOMICS - Abstract
Objectives: Diabetic retinopathy (DR), an earnest complication of diabetes, is one of the most common causes of blindness worldwide. This study aimed to investigate the altered metabolites in the serum of non-DR (NDR) and DR including non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR) subjects. Methods: In this study, the 1HNMR platform was applied to reveal the discriminating serum metabolites in three diabetic groups based on the status of their complications: T2D or NDR (n = 15), NPDR, (n = 15), and PDR (n = 15) groups. Multivariate analyses include principal component analysis (PCA) and Partial Least Structures-Discriminant Analysis (PLS-DA) analysis that were performed using R software. The main metabolic pathways were also revealed by KEGG pathway enrichment analysis. Results: The results revealed the significantly different metabolites include 10 metabolites of the NPDR versus PDR group, 24 metabolites of the PDR versus NDR group, and 25 metabolites of the NPDR versus NDR group. The results showed that the significantly altered metabolites in DR compared with NDR serum samples mainly belonged to amino acids. The most important pathways between NPDR/PDR, and NDR/DR groups include ascorbate and aldarate metabolism, galactose metabolism, glutathione metabolism, and tryptophan metabolism, respectively. In addition, some metabolites were detected for the first time. Conclusions: We created a metabolomics profile for NDR, PDR and NPDR groups. The impairment in the ascorbate/aldarate, galactose, and especially amino acids metabolism was identified as metabolic dysregulation associated with DR, which may provide new insights into potential pathogenesis pathways for DR. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF