We present enumerations of a class of toroidal graphs which give rise to semi-equivelar maps. There are eleven different types of semi-equivelar maps on the torus. These are of the types $\{3^{6}\}$, $\{4^{4}\}$, $\{6^{3}\}$, $\{3^{3}, 4^{2}\}$, $\{3^{2}, 4, 3, 4\}$, $\{3, 6, 3, 6\}$, $\{3^{4}, 6\}$, $\{4, 8^{2}\}$, $\{3, 12^{2}\}$, $\{4, 6, 12\}$, $\{3, 4, 6, 4\}$. We know the classification of the maps of types $\{3^{6}\}$, $\{4^{4}\}$, $\{6^{3}\}$ on the torus. In this article, we attempt to classify maps of types $\{3^{3}, 4^{2}\}$, $\{3^{2}, 4, 3, 4\}$, $\{3, 6, 3, 6\}$, $\{3^{4}, 6\}$, $\{4, 8^{2}\}$, $\{3, 12^{2}\}$, $\{4, 6, 12\}$, $\{3, 4, 6, 4\}$ on the torus.