1. An Anisotropic shrinking flow and L_p Minkowski problem
- Author
-
Sheng, Weimin and Yi, Caihong
- Subjects
Mathematics - Differential Geometry ,Mathematics - Analysis of PDEs ,53C44 (primary), 35K96 (secondary) - Abstract
We consider a shrinking flow of smooth, closed, uniformly convex hypersurfaces in (n+1)-dimensional Euclidean space with speed fu^{alpha}{sigma}_n^{beta}, where u is the support function of the hypersurface, alpha, beta are two constants, and beta>0, sigma_n is the n-th symmetric polynomial of the principle curvature radii of the hypersurface. We prove that the flow has a unique smooth and uniformly convex solution for all time, and converges smoothly after normalisation, to a soliton which is a solution of an elliptic equation, when the constants alpha, beta belong to a suitable range, provided the initial hypersuface is origin-symmetric and f is a smooth positive even function on S^n. For the case alpha>= 1+n*beta, beta>0, we prove that the flow converges smoothly after normalisation to a unique smooth solution of an elliptic equation without any constraint on the initial hypersuface and smooth positive function f. When beta=1, our argument provides a uniform proof to the existence of the solutions to the equation of L_p Minkowski problem for p belongs to (-n-1,+infty)., Comment: 24 pages, accepted by CAG
- Published
- 2019