1. P–551 Blastocyst cohort size is not associated with embryo aneuploidy: comprehensive multi-centre data from current preimplantation genetic testing cycles
- Author
-
D Sakkas, A Korkidakis, A L Lopes, A Pujol, A Lorenzon, A Rodrigue. Aranda, M Popovic, and Rita Vassena
- Subjects
medicine.diagnostic_test ,Rehabilitation ,Obstetrics and Gynecology ,Aneuploidy ,Embryo ,Biology ,Cohort size ,medicine.disease ,Andrology ,medicine.anatomical_structure ,Reproductive Medicine ,embryonic structures ,medicine ,Blastocyst ,Multi centre ,Genetic testing - Abstract
Study question Does blastocyst cohort size impact aneuploidy rates, evaluated by next generation sequencing (NGS)? Summary answer Embryo aneuploidy rates were independent of blastocyst cohort size across all patient ages. What is known already The effects of ovarian response on oocyte and embryo quality remain controversial. Several studies have proposed that a high response to ovarian stimulation may negatively impact oocyte competence. Alternatively, irrespective of maternal age, a poor ovarian response may potentially compromise embryo quality. Using blastocyst cohort size as an indirect measure of ovarian response, previous studies applying array comparative genomic hybridisation (aCGH) have demonstrated that the number of embryos available for biopsy does not impact embryo aneuploidy rates. Nevertheless, these findings remain to be confirmed in a comprehensive cohort, using current approaches for preimplantation genetic testing for aneuploidies (PGT-A). Study design, size, duration Retrospective, international, cohort study of 3998 patients from 16 clinics undergoing PGT-A from 2016–2020. We evaluated 11665 blastocysts, tested using trophectoderm (TE) biopsy and next generation sequencing (NGS). To eliminate bias of multiple treatments, we considered only the first PGT-A cycle for all patients. Both autologous and donation cycles were included in the analysis. Cycles were excluded if they utilised preimplantation genetic testing for monogenic disorders (PGT-M) or preimplantation genetic testing for structural rearrangements (PGT-SR). Participants/materials, setting, methods We evaluated aneuploidy and mosaicism rates, as well as the proportion of patients who had at least one euploid embryo suitable for transfer. Findings were stratified according to SART-defined maternal age groups, 42 (212/401 patients/blastocysts) and blastoycst cohort size (1–2, 3–5, 6–9 and 10 or more biopsied blastocysts). Main results and the role of chance The mean maternal age was 37.0±3.7. The overall embryo aneuploidy rate was 50.6% (5904/11665), while mosaicism was established in 4.0% (469/11665) of blastocysts. As expected, the proportion of aneuploid embryos increased steadily with advancing maternal age (31.8%, 41.5%, 58.4%, 71.2%, 87.8%; p 10 embryos had at least one euploid embryo in 100% of cases, across all ages. Albeit, the numbers of patients within this category was low, and decreased significantly with advancing maternal age. Limitations, reasons for caution While blastocyst cohort size is considered to be an indirect measure of ovarian reserve, the number of oocytes retrieved was not evaluated. Our study only included the first PGT-A cycle for all patients. Subsequent, alterations in stimulation protocols may have resulted in an improved response in some patients. Wider implications of the findings: The comprehensive nature of the study, based on current PGT-A approaches and a large number of cycles across 16 centres increases clinical confidence in the notion that ovarian response is independent of embryo aneuploidy. Importantly, our findings may serve as a valuable clinical resource to guide patient counselling strategies. Trial registration number NA
- Published
- 2021
- Full Text
- View/download PDF