1. On approximations of stochastic optimal control problems with an application to climate equations
- Author
-
Flandoli, Franco, Guatteri, Giuseppina, Pappalettera, Umberto, and Tessitore, Gianmario
- Subjects
Mathematics - Optimization and Control ,93E20, 60H15(Primary) 93E03 (Secondary) - Abstract
The paper is devoted to the optimal control of a system with two time-scales, in a regime when the limit equation is not of averaging type but, in the spirit of Wong-Zakai principle, it is a stochastic differential equation for the slow variable, with noise emerging from the fast one. It proves that it is possible to control the slow variable by acting only on the fast scales. The concrete problem, of interest for climate research, is embedded into an abstract framework in Hilbert spaces, with a stochastic process driven by an approximation of a given noise. The principle established here is that convergence of the uncontrolled problem is sufficient for convergence of both the optimal costs and the optimal controls. This target is reached using Girsanov transform and the representation of the optimal cost and the optimal controls using a Forward Backward System. A challenge in this program is represented by the generality considered here of unbounded control actions.
- Published
- 2024